基于RNN的阿拉伯语主动到被动词转换和MSD识别

Khalisyahdini Khalisyahdini, M. Bijaksana, K. Lhaksmana
{"title":"基于RNN的阿拉伯语主动到被动词转换和MSD识别","authors":"Khalisyahdini Khalisyahdini, M. Bijaksana, K. Lhaksmana","doi":"10.1145/3575882.3575901","DOIUrl":null,"url":null,"abstract":"Identifiying part of speech of word is critical for Arabic language morphology aspects. Existing approaches either 1) predict morphological description from active voice Arabic words with neural based; or 2) predict morphological description from active and passive voice Arabic words with rule based. Both kinds of approaches have shortcomings. Therefore, we propose on adding some other Arabic type of word, which is passive voice word. Specifically, we convert the active voice to passive voice Arabic with computation and morphological description identification from that result. Experiments show that our system sucessfully to change active to passive voice automatically and achieves good performance on morphological description identification using neural based method.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active-to-Passive Arabic Word Conversion and MSD Identification using RNN\",\"authors\":\"Khalisyahdini Khalisyahdini, M. Bijaksana, K. Lhaksmana\",\"doi\":\"10.1145/3575882.3575901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifiying part of speech of word is critical for Arabic language morphology aspects. Existing approaches either 1) predict morphological description from active voice Arabic words with neural based; or 2) predict morphological description from active and passive voice Arabic words with rule based. Both kinds of approaches have shortcomings. Therefore, we propose on adding some other Arabic type of word, which is passive voice word. Specifically, we convert the active voice to passive voice Arabic with computation and morphological description identification from that result. Experiments show that our system sucessfully to change active to passive voice automatically and achieves good performance on morphological description identification using neural based method.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

识别词的词性是阿拉伯语词法研究的重要内容。现有的方法有:1)基于神经网络预测阿拉伯语主动语态词的形态描述;2)基于规则预测阿拉伯语主动和被动语态词的形态描述。这两种方法都有缺点。因此,我们建议增加一些其他阿拉伯语类型的词,这是被动语态词。具体来说,我们将主动语态转换为被动语态,并根据该结果进行计算和形态描述识别。实验表明,该系统成功实现了主动语态到被动语态的自动转换,并采用基于神经网络的形态学描述识别方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active-to-Passive Arabic Word Conversion and MSD Identification using RNN
Identifiying part of speech of word is critical for Arabic language morphology aspects. Existing approaches either 1) predict morphological description from active voice Arabic words with neural based; or 2) predict morphological description from active and passive voice Arabic words with rule based. Both kinds of approaches have shortcomings. Therefore, we propose on adding some other Arabic type of word, which is passive voice word. Specifically, we convert the active voice to passive voice Arabic with computation and morphological description identification from that result. Experiments show that our system sucessfully to change active to passive voice automatically and achieves good performance on morphological description identification using neural based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1