无线胶囊内窥镜图像病变分类

Wenming Yang, Yaxing Cao, Qian Zhao, Yong Ren, Q. Liao
{"title":"无线胶囊内窥镜图像病变分类","authors":"Wenming Yang, Yaxing Cao, Qian Zhao, Yong Ren, Q. Liao","doi":"10.1109/ISBI.2019.8759577","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a scheme to classify different Wireless Capsule Endoscopy (WCE) lesion images for diagnosis. The main contribution is to quantify multi-scale pooled channel-wise information and merge multi-level features together by explicitly modeling interdependencies between all feature maps of different convolution layers. Firstly, feature maps are resized into multi-scale size with bicubic interpolation, and then down-sampling convolution method is adopted to obtain pooled feature maps of the same resolution, and finally one by one convolution kernels are utilized to fuse feature maps after quantization operation based on channel-wise attention mechanism in order to enhance feature extraction of the proposed architecture. Preliminary experimental result shows that our proposed scheme with less model parameters achieves competitive results compared to the state-of-the-art methods in WCE image classification task.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Lesion Classification of Wireless Capsule Endoscopy Images\",\"authors\":\"Wenming Yang, Yaxing Cao, Qian Zhao, Yong Ren, Q. Liao\",\"doi\":\"10.1109/ISBI.2019.8759577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a scheme to classify different Wireless Capsule Endoscopy (WCE) lesion images for diagnosis. The main contribution is to quantify multi-scale pooled channel-wise information and merge multi-level features together by explicitly modeling interdependencies between all feature maps of different convolution layers. Firstly, feature maps are resized into multi-scale size with bicubic interpolation, and then down-sampling convolution method is adopted to obtain pooled feature maps of the same resolution, and finally one by one convolution kernels are utilized to fuse feature maps after quantization operation based on channel-wise attention mechanism in order to enhance feature extraction of the proposed architecture. Preliminary experimental result shows that our proposed scheme with less model parameters achieves competitive results compared to the state-of-the-art methods in WCE image classification task.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一个方案,分类不同的无线胶囊内镜(WCE)病变图像进行诊断。主要贡献是量化多尺度池化通道信息,并通过显式建模不同卷积层的所有特征映射之间的相互依赖关系将多层次特征合并在一起。首先利用双三次插值将特征图调整为多尺度大小,然后采用下采样卷积方法获得相同分辨率的池化特征图,最后基于通道关注机制进行量化运算后,利用卷积核逐个融合特征图,以增强所提架构的特征提取能力。初步实验结果表明,该方法在模型参数较少的情况下,在WCE图像分类任务中取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lesion Classification of Wireless Capsule Endoscopy Images
In this paper, we propose a scheme to classify different Wireless Capsule Endoscopy (WCE) lesion images for diagnosis. The main contribution is to quantify multi-scale pooled channel-wise information and merge multi-level features together by explicitly modeling interdependencies between all feature maps of different convolution layers. Firstly, feature maps are resized into multi-scale size with bicubic interpolation, and then down-sampling convolution method is adopted to obtain pooled feature maps of the same resolution, and finally one by one convolution kernels are utilized to fuse feature maps after quantization operation based on channel-wise attention mechanism in order to enhance feature extraction of the proposed architecture. Preliminary experimental result shows that our proposed scheme with less model parameters achieves competitive results compared to the state-of-the-art methods in WCE image classification task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1