比特币和棱镜区块链的活力和一致性:非同步同步案例

Jing Li, Dongning Guo
{"title":"比特币和棱镜区块链的活力和一致性:非同步同步案例","authors":"Jing Li, Dongning Guo","doi":"10.1109/ICBC48266.2020.9169464","DOIUrl":null,"url":null,"abstract":"Bitcoin is a peer-to-peer payment system proposed by Nakamoto in 2008. Since then, a number of protocols based on the Nakamoto consensus have been proposed to improve the blockchain throughput while maintaining a similar level of security. In addition to bitcoin, this work also studies the Prism protocol proposed by Bagaria, Kannan, Tse, Fanti, and Viswanath in 2018. The liveness and consistency properties of the bitcoin and the Prism backbone protocols have been established by assuming either explicitly or implicitly that the blockchains have finite lifespan. While the lifespan can be arbitrarily large, it is unsatisfying for the security guarantee to be dependent on this parameter. In addition, most analyses also assume lockstep synchrony, where by the end of each round all honest miners have complete information about all blocks published until then. This paper presents a streamlined and strengthened analysis of the liveness and consistency of bitcoin and Prism protocols without the finite lifespan assumption. Also, we use the non-lockstep synchronous model which assumes the block propagation delays to be heterogeneous, arbitrary, and upper bounded by some constant. A probabilistic guarantee is also provided for a transaction to become permanent in the final ledger of all honest miners. In lieu of order optimal results, these properties take the form of explicit bounds, which provide improved design references for public transaction ledger protocols.","PeriodicalId":420845,"journal":{"name":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Liveness and Consistency of Bitcoin and Prism Blockchains: The Non-lockstep Synchronous Case\",\"authors\":\"Jing Li, Dongning Guo\",\"doi\":\"10.1109/ICBC48266.2020.9169464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bitcoin is a peer-to-peer payment system proposed by Nakamoto in 2008. Since then, a number of protocols based on the Nakamoto consensus have been proposed to improve the blockchain throughput while maintaining a similar level of security. In addition to bitcoin, this work also studies the Prism protocol proposed by Bagaria, Kannan, Tse, Fanti, and Viswanath in 2018. The liveness and consistency properties of the bitcoin and the Prism backbone protocols have been established by assuming either explicitly or implicitly that the blockchains have finite lifespan. While the lifespan can be arbitrarily large, it is unsatisfying for the security guarantee to be dependent on this parameter. In addition, most analyses also assume lockstep synchrony, where by the end of each round all honest miners have complete information about all blocks published until then. This paper presents a streamlined and strengthened analysis of the liveness and consistency of bitcoin and Prism protocols without the finite lifespan assumption. Also, we use the non-lockstep synchronous model which assumes the block propagation delays to be heterogeneous, arbitrary, and upper bounded by some constant. A probabilistic guarantee is also provided for a transaction to become permanent in the final ledger of all honest miners. In lieu of order optimal results, these properties take the form of explicit bounds, which provide improved design references for public transaction ledger protocols.\",\"PeriodicalId\":420845,\"journal\":{\"name\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBC48266.2020.9169464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBC48266.2020.9169464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

比特币是中本聪在2008年提出的一种点对点支付系统。从那时起,人们提出了一些基于中本共识的协议,以提高区块链的吞吐量,同时保持类似的安全水平。除了比特币,这项工作还研究了由Bagaria, Kannan, Tse, Fanti和Viswanath在2018年提出的Prism协议。比特币和Prism骨干协议的活跃性和一致性是通过明确或隐含地假设区块链具有有限的生命周期来建立的。虽然生命周期可以任意大,但依赖于此参数的安全保证是不令人满意的。此外,大多数分析还假设同步,即在每轮结束时,所有诚实的矿工都有关于发布的所有区块的完整信息。本文在没有有限寿命假设的情况下,对比特币和Prism协议的活动性和一致性进行了简化和强化的分析。此外,我们使用了非锁步同步模型,该模型假定块传播延迟是异构的、任意的,并且上界是某个常数。也为交易在所有诚实矿工的最终分类账中永久保存提供了概率保证。这些属性采用显式边界的形式代替了顺序最优结果,这为公共事务分类账协议提供了改进的设计参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liveness and Consistency of Bitcoin and Prism Blockchains: The Non-lockstep Synchronous Case
Bitcoin is a peer-to-peer payment system proposed by Nakamoto in 2008. Since then, a number of protocols based on the Nakamoto consensus have been proposed to improve the blockchain throughput while maintaining a similar level of security. In addition to bitcoin, this work also studies the Prism protocol proposed by Bagaria, Kannan, Tse, Fanti, and Viswanath in 2018. The liveness and consistency properties of the bitcoin and the Prism backbone protocols have been established by assuming either explicitly or implicitly that the blockchains have finite lifespan. While the lifespan can be arbitrarily large, it is unsatisfying for the security guarantee to be dependent on this parameter. In addition, most analyses also assume lockstep synchrony, where by the end of each round all honest miners have complete information about all blocks published until then. This paper presents a streamlined and strengthened analysis of the liveness and consistency of bitcoin and Prism protocols without the finite lifespan assumption. Also, we use the non-lockstep synchronous model which assumes the block propagation delays to be heterogeneous, arbitrary, and upper bounded by some constant. A probabilistic guarantee is also provided for a transaction to become permanent in the final ledger of all honest miners. In lieu of order optimal results, these properties take the form of explicit bounds, which provide improved design references for public transaction ledger protocols.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-to-Peer Network Building Hybrid DApps using Blockchain Tactics -The Meta-Transaction Example FabricUnit: A Framework for Faster Execution of Unit Tests on Hyperledger Fabric Distributed Fractionalized Data Networks For Data Integrity Cross-chain Transactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1