用微铣刀加工质子交换膜燃料电池

M. Jackson, G. Robinson, M. Brady
{"title":"用微铣刀加工质子交换膜燃料电池","authors":"M. Jackson, G. Robinson, M. Brady","doi":"10.1109/EEIC.2005.1566336","DOIUrl":null,"url":null,"abstract":"Bipolar proton exchange membrane (PEM) fuel cell plates are composed of flat pieces of graphite with channels or trenches machined into the face of the plate so that gases can flow in the channels of the plate. The operation of the fuel cell is dependent on the flow of oxygen and hydrogen gases around a fuel cell stack, which is composed of many thin plates connected to each other in very close proximity. Owing to the brittle nature of graphite, fuel cells plates are now made from nickel-chromium alloys that are coated with a thin solid layer of CrN or TiN to improve corrosion resistance. However, nickel-chromium alloys are notoriously difficult to machine. This paper describes the development of micromachining processes that allows fuel cells plates to be machined are very high speeds using novel nanocrystalline diamond and titanium coatings that have been specifically designed to cut strain hardening alloys at extremely high speeds","PeriodicalId":267510,"journal":{"name":"Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machining of proton exchange membrane fuel cells using micromilling tools\",\"authors\":\"M. Jackson, G. Robinson, M. Brady\",\"doi\":\"10.1109/EEIC.2005.1566336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bipolar proton exchange membrane (PEM) fuel cell plates are composed of flat pieces of graphite with channels or trenches machined into the face of the plate so that gases can flow in the channels of the plate. The operation of the fuel cell is dependent on the flow of oxygen and hydrogen gases around a fuel cell stack, which is composed of many thin plates connected to each other in very close proximity. Owing to the brittle nature of graphite, fuel cells plates are now made from nickel-chromium alloys that are coated with a thin solid layer of CrN or TiN to improve corrosion resistance. However, nickel-chromium alloys are notoriously difficult to machine. This paper describes the development of micromachining processes that allows fuel cells plates to be machined are very high speeds using novel nanocrystalline diamond and titanium coatings that have been specifically designed to cut strain hardening alloys at extremely high speeds\",\"PeriodicalId\":267510,\"journal\":{\"name\":\"Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005.\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEIC.2005.1566336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEIC.2005.1566336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

双极质子交换膜(PEM)燃料电池极板由平面石墨片组成,在极板的表面加工出通道或沟槽,以便气体可以在极板的通道中流动。燃料电池的运行依赖于燃料电池堆周围氧气和氢气的流动,燃料电池堆是由许多薄板组成的,它们彼此紧密相连。由于石墨的易碎性,燃料电池板现在由镍铬合金制成,表面涂有一层薄薄的CrN或TiN固体层,以提高耐腐蚀性。然而,镍铬合金是出了名的难加工。本文描述了微加工工艺的发展,该工艺允许使用新型纳米晶金刚石和钛涂层以非常高的速度加工燃料电池板,这种涂层专门用于以极高的速度切割应变硬化合金
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machining of proton exchange membrane fuel cells using micromilling tools
Bipolar proton exchange membrane (PEM) fuel cell plates are composed of flat pieces of graphite with channels or trenches machined into the face of the plate so that gases can flow in the channels of the plate. The operation of the fuel cell is dependent on the flow of oxygen and hydrogen gases around a fuel cell stack, which is composed of many thin plates connected to each other in very close proximity. Owing to the brittle nature of graphite, fuel cells plates are now made from nickel-chromium alloys that are coated with a thin solid layer of CrN or TiN to improve corrosion resistance. However, nickel-chromium alloys are notoriously difficult to machine. This paper describes the development of micromachining processes that allows fuel cells plates to be machined are very high speeds using novel nanocrystalline diamond and titanium coatings that have been specifically designed to cut strain hardening alloys at extremely high speeds
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Doubly-fed induction machine analysis for power flow control A new approach in insulation systems for rotating machines Modeling of capacitive and electromagnetic field shielding effects in a CVT Development and application of a novel partial discharge on-line monitoring system for GIS Study on insulation structure of fast slide in termination and joint for 15 kV power cable applying to live work on site
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1