M. Baldo, E. Petroni, L. Laurin, G. Samanni, Octavian Melinc, D. Ielmini, A. Redaelli
{"title":"ePCM成形脉冲与集成工艺流程的相互作用","authors":"M. Baldo, E. Petroni, L. Laurin, G. Samanni, Octavian Melinc, D. Ielmini, A. Redaelli","doi":"10.1109/prime55000.2022.9816795","DOIUrl":null,"url":null,"abstract":"Ge enrichment of the GeSbTe (GST) chalcogenide made possible for embedded phase change memories (ePCM) to guarantee the retention level necessary to satisfy the automotive market’s requirements. In Ge-GST devices at the end of the fabrication process memory cells are in the pristine state (virgin) and, in order to be programmed, an activation step is necessary (forming). In this work an investigation on the influence of two back end of the line (BEOL) processes on the virgin state and forming process is presented. A model that accurately replicates both physical and electrical trends is also shown.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interaction between forming pulse and integration process flow in ePCM\",\"authors\":\"M. Baldo, E. Petroni, L. Laurin, G. Samanni, Octavian Melinc, D. Ielmini, A. Redaelli\",\"doi\":\"10.1109/prime55000.2022.9816795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ge enrichment of the GeSbTe (GST) chalcogenide made possible for embedded phase change memories (ePCM) to guarantee the retention level necessary to satisfy the automotive market’s requirements. In Ge-GST devices at the end of the fabrication process memory cells are in the pristine state (virgin) and, in order to be programmed, an activation step is necessary (forming). In this work an investigation on the influence of two back end of the line (BEOL) processes on the virgin state and forming process is presented. A model that accurately replicates both physical and electrical trends is also shown.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interaction between forming pulse and integration process flow in ePCM
Ge enrichment of the GeSbTe (GST) chalcogenide made possible for embedded phase change memories (ePCM) to guarantee the retention level necessary to satisfy the automotive market’s requirements. In Ge-GST devices at the end of the fabrication process memory cells are in the pristine state (virgin) and, in order to be programmed, an activation step is necessary (forming). In this work an investigation on the influence of two back end of the line (BEOL) processes on the virgin state and forming process is presented. A model that accurately replicates both physical and electrical trends is also shown.