从稀疏标记数据中学习3D零件检测

A. Makadia, M. E. Yümer
{"title":"从稀疏标记数据中学习3D零件检测","authors":"A. Makadia, M. E. Yümer","doi":"10.1109/3DV.2014.108","DOIUrl":null,"url":null,"abstract":"For large collections of 3D models, the ability to detect and localize parts of interest is necessary to provide search and visualization enhancements beyond simple high-level categorization. While current 3D labeling approaches rely on learning from fully labeled meshes, such training data is difficult to acquire at scale. In this work we explore learning to detect object parts from sparsely labeled data, i.e. we operate under the assumption that for any object part we have only one labeled vertex rather than a full region segmentation. Similarly, we also learn to output a single representative vertex for each detected part. Such localized predictions are useful for applications where visualization is important. Our approach relies heavily on exploiting the spatial configuration of parts on a model to drive the detection. Inspired by structured multi-class object detection models for images, we develop an algorithm that combines independently trained part classifiers with a structured SVM model, and show promising results on real-world textured 3D data.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning 3D Part Detection from Sparsely Labeled Data\",\"authors\":\"A. Makadia, M. E. Yümer\",\"doi\":\"10.1109/3DV.2014.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For large collections of 3D models, the ability to detect and localize parts of interest is necessary to provide search and visualization enhancements beyond simple high-level categorization. While current 3D labeling approaches rely on learning from fully labeled meshes, such training data is difficult to acquire at scale. In this work we explore learning to detect object parts from sparsely labeled data, i.e. we operate under the assumption that for any object part we have only one labeled vertex rather than a full region segmentation. Similarly, we also learn to output a single representative vertex for each detected part. Such localized predictions are useful for applications where visualization is important. Our approach relies heavily on exploiting the spatial configuration of parts on a model to drive the detection. Inspired by structured multi-class object detection models for images, we develop an algorithm that combines independently trained part classifiers with a structured SVM model, and show promising results on real-world textured 3D data.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

对于大型3D模型集合,检测和定位感兴趣部分的能力是必要的,以提供简单的高级分类之外的搜索和可视化增强。虽然目前的3D标记方法依赖于从完全标记的网格中学习,但这种训练数据很难大规模获取。在这项工作中,我们探索学习从稀疏标记的数据中检测物体部分,即我们假设对于任何物体部分,我们只有一个标记的顶点,而不是一个完整的区域分割。类似地,我们还学习为每个检测到的部分输出单个代表性顶点。这种本地化预测对于可视化很重要的应用程序非常有用。我们的方法在很大程度上依赖于利用模型上零件的空间配置来驱动检测。受结构化多类图像目标检测模型的启发,我们开发了一种将独立训练的部分分类器与结构化支持向量机模型相结合的算法,并在现实世界的纹理3D数据上显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning 3D Part Detection from Sparsely Labeled Data
For large collections of 3D models, the ability to detect and localize parts of interest is necessary to provide search and visualization enhancements beyond simple high-level categorization. While current 3D labeling approaches rely on learning from fully labeled meshes, such training data is difficult to acquire at scale. In this work we explore learning to detect object parts from sparsely labeled data, i.e. we operate under the assumption that for any object part we have only one labeled vertex rather than a full region segmentation. Similarly, we also learn to output a single representative vertex for each detected part. Such localized predictions are useful for applications where visualization is important. Our approach relies heavily on exploiting the spatial configuration of parts on a model to drive the detection. Inspired by structured multi-class object detection models for images, we develop an algorithm that combines independently trained part classifiers with a structured SVM model, and show promising results on real-world textured 3D data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1