基于遗传算法和多线程的C-SVM RBF核模型选择

Guoyou Shi, Shuang Liu
{"title":"基于遗传算法和多线程的C-SVM RBF核模型选择","authors":"Guoyou Shi, Shuang Liu","doi":"10.1109/ICMLC.2012.6358944","DOIUrl":null,"url":null,"abstract":"Generalization performance of support vector machines depends on optimal selection of parameter values. But training the best parameters for C-Support Vector Machines (C-SVM) classifier with RBF kernel is time-consuming. We can hardly finish training process for large data sets with traditional methods. Multithreading as a widespread programming and execution model allows multiple threads to exist within the context of a single process, which has been widely applied in data processing and analyzing. In this paper, we studied how to adopt genetic algorithm and multithreading model to complete optimal model selection of C-SVM classifier with RBF kernel. This new approach not only chooses global parameters, but also saves training time based on parallel computing process. Experimental results show the efficiency and feasibility of new approach.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Model selection of RBF kernel for C-SVM based on genetic algorithm and multithreading\",\"authors\":\"Guoyou Shi, Shuang Liu\",\"doi\":\"10.1109/ICMLC.2012.6358944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalization performance of support vector machines depends on optimal selection of parameter values. But training the best parameters for C-Support Vector Machines (C-SVM) classifier with RBF kernel is time-consuming. We can hardly finish training process for large data sets with traditional methods. Multithreading as a widespread programming and execution model allows multiple threads to exist within the context of a single process, which has been widely applied in data processing and analyzing. In this paper, we studied how to adopt genetic algorithm and multithreading model to complete optimal model selection of C-SVM classifier with RBF kernel. This new approach not only chooses global parameters, but also saves training time based on parallel computing process. Experimental results show the efficiency and feasibility of new approach.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6358944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6358944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

支持向量机的泛化性能取决于参数值的最优选择。但是用RBF核训练c -支持向量机分类器的最佳参数是非常耗时的。传统的方法很难完成大数据集的训练过程。多线程作为一种广泛应用的编程和执行模型,允许在单个进程的上下文中存在多个线程,在数据处理和分析中得到了广泛的应用。本文研究了如何采用遗传算法和多线程模型来完成带有RBF核的C-SVM分类器的最优模型选择。该方法不仅选择了全局参数,而且基于并行计算过程节省了训练时间。实验结果表明了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model selection of RBF kernel for C-SVM based on genetic algorithm and multithreading
Generalization performance of support vector machines depends on optimal selection of parameter values. But training the best parameters for C-Support Vector Machines (C-SVM) classifier with RBF kernel is time-consuming. We can hardly finish training process for large data sets with traditional methods. Multithreading as a widespread programming and execution model allows multiple threads to exist within the context of a single process, which has been widely applied in data processing and analyzing. In this paper, we studied how to adopt genetic algorithm and multithreading model to complete optimal model selection of C-SVM classifier with RBF kernel. This new approach not only chooses global parameters, but also saves training time based on parallel computing process. Experimental results show the efficiency and feasibility of new approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1