探索可捕获的日常记忆以进行自传式认证

Sauvik Das, Eiji Hayashi, Jason I. Hong
{"title":"探索可捕获的日常记忆以进行自传式认证","authors":"Sauvik Das, Eiji Hayashi, Jason I. Hong","doi":"10.1145/2493432.2493453","DOIUrl":null,"url":null,"abstract":"We explore how well the intersection between our own everyday memories and those captured by our smartphones can be used for what we call autobiographical authentication-a challenge-response authentication system that queries users about day-to-day experiences. Through three studies-two on MTurk and one field study-we found that users are good, but make systematic errors at answering autobiographical questions. Using Bayesian modeling to account for these systematic response errors, we derived a formula for computing a confidence rating that the attempting authenticator is the user from a sequence of question-answer responses. We tested our formula against five simulated adversaries based on plausible real-life counterparts. Our simulations indicate that our model of autobiographical authentication generally performs well in assigning high confidence estimates to the user and low confidence estimates to impersonating adversaries.","PeriodicalId":262104,"journal":{"name":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Exploring capturable everyday memory for autobiographical authentication\",\"authors\":\"Sauvik Das, Eiji Hayashi, Jason I. Hong\",\"doi\":\"10.1145/2493432.2493453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore how well the intersection between our own everyday memories and those captured by our smartphones can be used for what we call autobiographical authentication-a challenge-response authentication system that queries users about day-to-day experiences. Through three studies-two on MTurk and one field study-we found that users are good, but make systematic errors at answering autobiographical questions. Using Bayesian modeling to account for these systematic response errors, we derived a formula for computing a confidence rating that the attempting authenticator is the user from a sequence of question-answer responses. We tested our formula against five simulated adversaries based on plausible real-life counterparts. Our simulations indicate that our model of autobiographical authentication generally performs well in assigning high confidence estimates to the user and low confidence estimates to impersonating adversaries.\",\"PeriodicalId\":262104,\"journal\":{\"name\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2493432.2493453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2493432.2493453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

我们将探索我们自己的日常记忆和智能手机捕捉到的记忆之间的交集如何被用于我们所谓的自传认证——一种询问用户日常体验的挑战-响应认证系统。通过三项研究——两项在MTurk上进行,另一项实地研究——我们发现,用户表现不错,但在回答自传式问题时会犯系统性错误。使用贝叶斯建模来解释这些系统响应错误,我们推导了一个公式,用于计算从一系列问答响应中判断尝试验证者是用户的置信度。我们在五个模拟对手身上测试了我们的公式,这些对手都是真实存在的。我们的仿真表明,我们的自传式身份验证模型通常在为用户分配高置信度估计和为冒充对手分配低置信度估计方面表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring capturable everyday memory for autobiographical authentication
We explore how well the intersection between our own everyday memories and those captured by our smartphones can be used for what we call autobiographical authentication-a challenge-response authentication system that queries users about day-to-day experiences. Through three studies-two on MTurk and one field study-we found that users are good, but make systematic errors at answering autobiographical questions. Using Bayesian modeling to account for these systematic response errors, we derived a formula for computing a confidence rating that the attempting authenticator is the user from a sequence of question-answer responses. We tested our formula against five simulated adversaries based on plausible real-life counterparts. Our simulations indicate that our model of autobiographical authentication generally performs well in assigning high confidence estimates to the user and low confidence estimates to impersonating adversaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storage-aware smartphone energy savings Three case studies of UX with moving products Session details: Location-based services I CoenoFire: monitoring performance indicators of firefighters in real-world missions using smartphones Session details: Sustainability I
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1