油纳米团簇在多孔介质毛细管中的流动

Y. Pakharukov, F. Shabiev, R. Safargaliev, A. V. Morev
{"title":"油纳米团簇在多孔介质毛细管中的流动","authors":"Y. Pakharukov, F. Shabiev, R. Safargaliev, A. V. Morev","doi":"10.31660/0445-0108-2022-5-90-97","DOIUrl":null,"url":null,"abstract":"   In the article, we consider movement of hydrophilic and hydrophobic liquids in a capillary. It is known that structure of flow of such fluids depends on set of conditions. The issue of correct choice of control parameters is of great importance for controlling the transition of the flow into different modes. The most important issue in the filtration problem is morphological stability of displacement front during filtration. It is generally assumed that it is sufficient to control the capillary number to change the flow regimes. The article shows that another parameter can be singled out, which is the disjoining pressure. If mechanisms of influence on wedging pressure can be found, then it is possible to control effectively flow by changing thickness of jet and to control the process of clustering (splitting of jet into droplets). In the article, it is shown that such mechanism can be interaction of hydrocarbon molecules with nanoparticles.","PeriodicalId":240239,"journal":{"name":"Oil and Gas Studies","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow of oil nanoclusters in a porous medium capillary\",\"authors\":\"Y. Pakharukov, F. Shabiev, R. Safargaliev, A. V. Morev\",\"doi\":\"10.31660/0445-0108-2022-5-90-97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"   In the article, we consider movement of hydrophilic and hydrophobic liquids in a capillary. It is known that structure of flow of such fluids depends on set of conditions. The issue of correct choice of control parameters is of great importance for controlling the transition of the flow into different modes. The most important issue in the filtration problem is morphological stability of displacement front during filtration. It is generally assumed that it is sufficient to control the capillary number to change the flow regimes. The article shows that another parameter can be singled out, which is the disjoining pressure. If mechanisms of influence on wedging pressure can be found, then it is possible to control effectively flow by changing thickness of jet and to control the process of clustering (splitting of jet into droplets). In the article, it is shown that such mechanism can be interaction of hydrocarbon molecules with nanoparticles.\",\"PeriodicalId\":240239,\"journal\":{\"name\":\"Oil and Gas Studies\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil and Gas Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31660/0445-0108-2022-5-90-97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil and Gas Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31660/0445-0108-2022-5-90-97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了亲水和疏水液体在毛细管中的运动。众所周知,这类流体的流动结构取决于一系列条件。控制参数的正确选择对于控制流向不同模式的转换具有重要意义。过滤问题中最重要的问题是过滤过程中位移锋的形态稳定性。一般认为只要控制毛细数就足以改变流动型态。本文表明,还可以单独提出另一个参数,即分离压力。如果能够找到影响楔入压力的机理,那么就有可能通过改变射流厚度来有效控制流动,并控制聚类过程(射流分裂成液滴)。本文表明,这种机理可能是碳氢化合物分子与纳米颗粒的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow of oil nanoclusters in a porous medium capillary
   In the article, we consider movement of hydrophilic and hydrophobic liquids in a capillary. It is known that structure of flow of such fluids depends on set of conditions. The issue of correct choice of control parameters is of great importance for controlling the transition of the flow into different modes. The most important issue in the filtration problem is morphological stability of displacement front during filtration. It is generally assumed that it is sufficient to control the capillary number to change the flow regimes. The article shows that another parameter can be singled out, which is the disjoining pressure. If mechanisms of influence on wedging pressure can be found, then it is possible to control effectively flow by changing thickness of jet and to control the process of clustering (splitting of jet into droplets). In the article, it is shown that such mechanism can be interaction of hydrocarbon molecules with nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of phase evolution and microstructural features when modeling operating conditions of fuel cells based on lanthanum-strontium ferrite compounds The quality of circulating water and its impact on the operation of heat exchange equipment at petrochemical enterprises Experience in seismic facies analysis application during prospecting and exploration A forecast of the gas saturation factor in the NB1 layer of Upper Cretaceous deposits within the Nadym-Pur-Taz region of West Siberia Modern approaches to the justification of zones with different saturation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1