{"title":"自身抗体的结构、生理和功能","authors":"N. Uyar","doi":"10.5772/INTECHOPEN.76020","DOIUrl":null,"url":null,"abstract":"Prevalence of autoimmune diseases is increasing. Antibodies are responsible for the humoral type of adaptive immune responses, glycoprotein structure and produced by B lymphocytes. Failure of Immunologic self-tolerance due to environmental and genetic factors may predipose the development of autoimmunity. Self-antigens are either tolerogenic or ignored. Central tolerance occurs at immature Tand B lymphocytes in the thymus and bone marrow. Peripheral tolerance occurs at mature lymphocytes encounter self-antigens in peripheral tissues. Negative selection, regulatory T cells, anergy, activation-induced cell death, immune suppression, receptor editing are examples of important steps of immune tolerance. B lymphocytes that produce antibodies which bind self-antigen with medium/low affinity escape from anergy and those antibodies are called as natural autoantibodies but the other ones with high affinity are undergo anergy, The natural antibodies have play critical roles as; discrimination foreign from self, auto-multireactivity, regulate the immunomodulation, maintain tissue homeostasis. Natural autoantibodies work as the templates for the produc- tion of pathogenic autoantibodies which has high affinity, switch the class and diverse somatically under proper conditions. Pathogenic autoantibodies can protect or cause diseases via neutralization of self-antigens, opsonization, antibody-dependent cellular cytotoxicity, activation of the complement system, pro-inflammatory and anti-inflammatory effect.","PeriodicalId":332581,"journal":{"name":"Autoantibodies and Cytokines","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structure, Physiology, and Functions of Autoantibodies\",\"authors\":\"N. Uyar\",\"doi\":\"10.5772/INTECHOPEN.76020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prevalence of autoimmune diseases is increasing. Antibodies are responsible for the humoral type of adaptive immune responses, glycoprotein structure and produced by B lymphocytes. Failure of Immunologic self-tolerance due to environmental and genetic factors may predipose the development of autoimmunity. Self-antigens are either tolerogenic or ignored. Central tolerance occurs at immature Tand B lymphocytes in the thymus and bone marrow. Peripheral tolerance occurs at mature lymphocytes encounter self-antigens in peripheral tissues. Negative selection, regulatory T cells, anergy, activation-induced cell death, immune suppression, receptor editing are examples of important steps of immune tolerance. B lymphocytes that produce antibodies which bind self-antigen with medium/low affinity escape from anergy and those antibodies are called as natural autoantibodies but the other ones with high affinity are undergo anergy, The natural antibodies have play critical roles as; discrimination foreign from self, auto-multireactivity, regulate the immunomodulation, maintain tissue homeostasis. Natural autoantibodies work as the templates for the produc- tion of pathogenic autoantibodies which has high affinity, switch the class and diverse somatically under proper conditions. Pathogenic autoantibodies can protect or cause diseases via neutralization of self-antigens, opsonization, antibody-dependent cellular cytotoxicity, activation of the complement system, pro-inflammatory and anti-inflammatory effect.\",\"PeriodicalId\":332581,\"journal\":{\"name\":\"Autoantibodies and Cytokines\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autoantibodies and Cytokines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.76020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autoantibodies and Cytokines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.76020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structure, Physiology, and Functions of Autoantibodies
Prevalence of autoimmune diseases is increasing. Antibodies are responsible for the humoral type of adaptive immune responses, glycoprotein structure and produced by B lymphocytes. Failure of Immunologic self-tolerance due to environmental and genetic factors may predipose the development of autoimmunity. Self-antigens are either tolerogenic or ignored. Central tolerance occurs at immature Tand B lymphocytes in the thymus and bone marrow. Peripheral tolerance occurs at mature lymphocytes encounter self-antigens in peripheral tissues. Negative selection, regulatory T cells, anergy, activation-induced cell death, immune suppression, receptor editing are examples of important steps of immune tolerance. B lymphocytes that produce antibodies which bind self-antigen with medium/low affinity escape from anergy and those antibodies are called as natural autoantibodies but the other ones with high affinity are undergo anergy, The natural antibodies have play critical roles as; discrimination foreign from self, auto-multireactivity, regulate the immunomodulation, maintain tissue homeostasis. Natural autoantibodies work as the templates for the produc- tion of pathogenic autoantibodies which has high affinity, switch the class and diverse somatically under proper conditions. Pathogenic autoantibodies can protect or cause diseases via neutralization of self-antigens, opsonization, antibody-dependent cellular cytotoxicity, activation of the complement system, pro-inflammatory and anti-inflammatory effect.