电力系统运行对负荷预测数据注入攻击的脆弱性研究

Yize Chen, Yushi Tan, Ling Zhang, Baosen Zhang
{"title":"电力系统运行对负荷预测数据注入攻击的脆弱性研究","authors":"Yize Chen, Yushi Tan, Ling Zhang, Baosen Zhang","doi":"10.1109/SmartGridComm51999.2021.9631987","DOIUrl":null,"url":null,"abstract":"We study the security threats of power system operations from a class of data injection attacks on load forecasting algorithms. In particular, we design an attack strategy on input features for load forecasting algorithms which can be implemented by an attacker with minimal system knowledge. System operators can be oblivious of such wrong load forecasts, which lead to uneconomical or even insecure decisions in commitment and dispatch. This paper brings up the security issues of load forecasting algorithms and shows that accurate load forecasting algorithm is not necessarily robust to malicious attacks. If power grid topology information is exploited, more severe attacks can be designed. We demonstrate the impact of load forecasting attacks on two IEEE test cases. We show our attack strategy is able to cause load shedding with high probability under various settings in the 14-bus test case, and also demonstrate system-wide threats in the 118-bus test case with limited local attacks.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Vulnerabilities of Power System Operations to Load Forecasting Data Injection Attacks\",\"authors\":\"Yize Chen, Yushi Tan, Ling Zhang, Baosen Zhang\",\"doi\":\"10.1109/SmartGridComm51999.2021.9631987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the security threats of power system operations from a class of data injection attacks on load forecasting algorithms. In particular, we design an attack strategy on input features for load forecasting algorithms which can be implemented by an attacker with minimal system knowledge. System operators can be oblivious of such wrong load forecasts, which lead to uneconomical or even insecure decisions in commitment and dispatch. This paper brings up the security issues of load forecasting algorithms and shows that accurate load forecasting algorithm is not necessarily robust to malicious attacks. If power grid topology information is exploited, more severe attacks can be designed. We demonstrate the impact of load forecasting attacks on two IEEE test cases. We show our attack strategy is able to cause load shedding with high probability under various settings in the 14-bus test case, and also demonstrate system-wide threats in the 118-bus test case with limited local attacks.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9631987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9631987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

从负荷预测算法的一类数据注入攻击出发,研究了电力系统运行的安全威胁。特别是,我们设计了一种针对负载预测算法的输入特征的攻击策略,攻击者可以用最少的系统知识来实现。系统操作员可能会忽略这种错误的负荷预测,从而导致不经济甚至不安全的承诺和调度决策。本文提出了负荷预测算法的安全性问题,并指出准确的负荷预测算法对恶意攻击并不一定具有鲁棒性。如果利用电网拓扑信息,可以设计更严重的攻击。我们在两个IEEE测试用例上演示了负载预测攻击的影响。我们展示了我们的攻击策略能够在14总线测试用例的各种设置下以高概率导致负载下降,并且还展示了118总线测试用例中具有有限本地攻击的系统范围的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vulnerabilities of Power System Operations to Load Forecasting Data Injection Attacks
We study the security threats of power system operations from a class of data injection attacks on load forecasting algorithms. In particular, we design an attack strategy on input features for load forecasting algorithms which can be implemented by an attacker with minimal system knowledge. System operators can be oblivious of such wrong load forecasts, which lead to uneconomical or even insecure decisions in commitment and dispatch. This paper brings up the security issues of load forecasting algorithms and shows that accurate load forecasting algorithm is not necessarily robust to malicious attacks. If power grid topology information is exploited, more severe attacks can be designed. We demonstrate the impact of load forecasting attacks on two IEEE test cases. We show our attack strategy is able to cause load shedding with high probability under various settings in the 14-bus test case, and also demonstrate system-wide threats in the 118-bus test case with limited local attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1