具有高阶访问依赖关系的高效非定常流场可视化

Jiang Zhang, Hanqi Guo, Xiaoru Yuan
{"title":"具有高阶访问依赖关系的高效非定常流场可视化","authors":"Jiang Zhang, Hanqi Guo, Xiaoru Yuan","doi":"10.1109/PACIFICVIS.2016.7465254","DOIUrl":null,"url":null,"abstract":"We present a novel high-order access dependencies-based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.","PeriodicalId":129600,"journal":{"name":"2016 IEEE Pacific Visualization Symposium (PacificVis)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Efficient unsteady flow visualization with high-order access dependencies\",\"authors\":\"Jiang Zhang, Hanqi Guo, Xiaoru Yuan\",\"doi\":\"10.1109/PACIFICVIS.2016.7465254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel high-order access dependencies-based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.\",\"PeriodicalId\":129600,\"journal\":{\"name\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACIFICVIS.2016.7465254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACIFICVIS.2016.7465254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种新的基于高阶访问依赖的非定常流场可视化路径计算模型。通过在粒子跟踪中考虑更长的访问序列来建模更复杂的数据访问模式,我们的方法大大提高了数据访问预测的准确性和可靠性。在我们的工作中,高阶访问依赖关系是通过在预处理阶段向前和向后跟踪均匀播种路径来计算的。通过一个具有高阶数据预取的并行粒子跟踪框架证明了我们方法的有效性。结果表明,该方法实现了较高的数据局部性,从而提高了路径计算的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient unsteady flow visualization with high-order access dependencies
We present a novel high-order access dependencies-based model for efficient pathline computation in unsteady flow visualization. By taking longer access sequences into account to model more sophisticated data access patterns in particle tracing, our method greatly improves the accuracy and reliability in data access prediction. In our work, high-order access dependencies are calculated by tracing uniformly seeded pathlines in both forward and backward directions in a preprocessing stage. The effectiveness of our approach is demonstrated through a parallel particle tracing framework with high-order data prefetching. Results show that our method achieves higher data locality and hence improves the efficiency of pathline computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual analysis of body movement in serious games for healthcare An integrated geometric and topological approach to connecting cavities in biomolecules Interactive exploration of atomic trajectories through relative-angle distribution and associated uncertainties A visual analytics approach to high-dimensional logistic regression modeling and its application to an environmental health study Semantic word cloud generation based on word embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1