减少提取器的错误

R. Raz, Omer Reingold, S. Vadhan
{"title":"减少提取器的错误","authors":"R. Raz, Omer Reingold, S. Vadhan","doi":"10.1109/SFFCS.1999.814591","DOIUrl":null,"url":null,"abstract":"An extractor is a function which extracts (almost) truly random bits from a weak random source, using a small number of additional random bits as a catalyst. We present a general method to reduce the error of any extractor. Our method works particularly well in the case that the original extractor extracts up to a constant function of the source min-entropy and achieves a polynomially small error. In that case, we are able to reduce the error to (almost) any /spl epsiv/, using only O(log(1//spl epsiv/)) additional truly random bits (while keeping the other parameters of the original extractor more or less the same). In other cases (e.g. when the original extractor extracts all the min-entropy or achieves only a constant error), our method is not optimal but it is still quite efficient and leads to improved constructions of extractors. Using our method, we are able to improve almost all known extractors in the case where the error required is relatively small (e.g. less than a polynomially small error). In particular, we apply our method to the new extractors of L. Trevisan (1999) and R. Raz et al. (1999) to obtain improved constructions in almost all cases. Specifically, we obtain extractors that work for sources of any min-entropy on strings of length n which (a) extract any 1/n/sup /spl gamma// fraction of the min-entropy using O[log n+log(1//spl epsiv/)] truly random bits (for any /spl gamma/>0), (b) extract any constant fraction of the min-entropy using O[log/sup 2/n+log(1//spl epsiv/)] truly random bits, and (c) extract all the min-entropy using O[log/sup 3/n+log n/spl middot/log(1//spl epsiv/)] truly random bits.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Error reduction for extractors\",\"authors\":\"R. Raz, Omer Reingold, S. Vadhan\",\"doi\":\"10.1109/SFFCS.1999.814591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An extractor is a function which extracts (almost) truly random bits from a weak random source, using a small number of additional random bits as a catalyst. We present a general method to reduce the error of any extractor. Our method works particularly well in the case that the original extractor extracts up to a constant function of the source min-entropy and achieves a polynomially small error. In that case, we are able to reduce the error to (almost) any /spl epsiv/, using only O(log(1//spl epsiv/)) additional truly random bits (while keeping the other parameters of the original extractor more or less the same). In other cases (e.g. when the original extractor extracts all the min-entropy or achieves only a constant error), our method is not optimal but it is still quite efficient and leads to improved constructions of extractors. Using our method, we are able to improve almost all known extractors in the case where the error required is relatively small (e.g. less than a polynomially small error). In particular, we apply our method to the new extractors of L. Trevisan (1999) and R. Raz et al. (1999) to obtain improved constructions in almost all cases. Specifically, we obtain extractors that work for sources of any min-entropy on strings of length n which (a) extract any 1/n/sup /spl gamma// fraction of the min-entropy using O[log n+log(1//spl epsiv/)] truly random bits (for any /spl gamma/>0), (b) extract any constant fraction of the min-entropy using O[log/sup 2/n+log(1//spl epsiv/)] truly random bits, and (c) extract all the min-entropy using O[log/sup 3/n+log n/spl middot/log(1//spl epsiv/)] truly random bits.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

提取器是一个函数,它使用少量额外的随机比特作为催化剂,从弱随机源中提取(几乎)真正的随机比特。我们提出了一种通用的方法来减少任何提取器的误差。我们的方法在原始提取器提取源最小熵的常数函数并实现多项式小误差的情况下工作得特别好。在这种情况下,我们能够将误差减少到(几乎)任何/spl epsiv/,只使用O(log(1//spl epsiv/))额外的真正随机位(同时保持原始提取器的其他参数大致相同)。在其他情况下(例如,当原始提取器提取所有最小熵或仅获得恒定误差时),我们的方法不是最优的,但它仍然非常有效,并导致改进提取器的结构。使用我们的方法,我们能够在所需误差相对较小(例如小于多项式小误差)的情况下改进几乎所有已知的提取器。特别是,我们将我们的方法应用于L. Trevisan(1999)和R. Raz等人(1999)的新提取器,以获得几乎所有情况下的改进结构。具体来说,我们获得了对长度为n的字符串上的任何最小熵源工作的提取器,其中(a)使用O[log n+log(1//spl epsiv/)]真正随机比特提取最小熵的任何1/n/sup /spl gamma//分数(对于任何/spl gamma/>0), (b)使用O[log/sup 2/n+log(1//spl epsiv/)]真正随机比特提取最小熵的任何常数分数,以及(c)使用O[log/sup 3/n+log n/spl middot/log(1//spl epsiv/)]真正随机比特提取所有最小熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error reduction for extractors
An extractor is a function which extracts (almost) truly random bits from a weak random source, using a small number of additional random bits as a catalyst. We present a general method to reduce the error of any extractor. Our method works particularly well in the case that the original extractor extracts up to a constant function of the source min-entropy and achieves a polynomially small error. In that case, we are able to reduce the error to (almost) any /spl epsiv/, using only O(log(1//spl epsiv/)) additional truly random bits (while keeping the other parameters of the original extractor more or less the same). In other cases (e.g. when the original extractor extracts all the min-entropy or achieves only a constant error), our method is not optimal but it is still quite efficient and leads to improved constructions of extractors. Using our method, we are able to improve almost all known extractors in the case where the error required is relatively small (e.g. less than a polynomially small error). In particular, we apply our method to the new extractors of L. Trevisan (1999) and R. Raz et al. (1999) to obtain improved constructions in almost all cases. Specifically, we obtain extractors that work for sources of any min-entropy on strings of length n which (a) extract any 1/n/sup /spl gamma// fraction of the min-entropy using O[log n+log(1//spl epsiv/)] truly random bits (for any /spl gamma/>0), (b) extract any constant fraction of the min-entropy using O[log/sup 2/n+log(1//spl epsiv/)] truly random bits, and (c) extract all the min-entropy using O[log/sup 3/n+log n/spl middot/log(1//spl epsiv/)] truly random bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markovian coupling vs. conductance for the Jerrum-Sinclair chain Fairness in routing and load balancing Reducing network congestion and blocking probability through balanced allocation Approximating fractional multicommodity flow independent of the number of commodities Random walks on truncated cubes and sampling 0-1 knapsack solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1