{"title":"智能电网通信网络有效容量分析","authors":"Minglei You, Xiaolin Mou, Hongjian Sun","doi":"10.1109/CAMAD.2015.7390508","DOIUrl":null,"url":null,"abstract":"Smart grid represents a significant new technology of improving the efficiency, reliability and economics of the production, transmission and distribution of electricity that helps reduce carbon emissions. Communication networks become a key to achieving smart grid benefits due to their capability of delivering data and control signals. However, there does not exist a unified approach to quantify how well a communication network supports smart grid applications. In this paper, effective capacity is exploited as a good candidate to quantitatively measure how well the communication network supports smart grid applications, regardless of specific network technologies. Case studies using the effective capacity are given and analyzed by simulations in different smart grid application scenarios.","PeriodicalId":370856,"journal":{"name":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Effective capacity analysis of smart grid communication networks\",\"authors\":\"Minglei You, Xiaolin Mou, Hongjian Sun\",\"doi\":\"10.1109/CAMAD.2015.7390508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grid represents a significant new technology of improving the efficiency, reliability and economics of the production, transmission and distribution of electricity that helps reduce carbon emissions. Communication networks become a key to achieving smart grid benefits due to their capability of delivering data and control signals. However, there does not exist a unified approach to quantify how well a communication network supports smart grid applications. In this paper, effective capacity is exploited as a good candidate to quantitatively measure how well the communication network supports smart grid applications, regardless of specific network technologies. Case studies using the effective capacity are given and analyzed by simulations in different smart grid application scenarios.\",\"PeriodicalId\":370856,\"journal\":{\"name\":\"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD.2015.7390508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 20th International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2015.7390508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effective capacity analysis of smart grid communication networks
Smart grid represents a significant new technology of improving the efficiency, reliability and economics of the production, transmission and distribution of electricity that helps reduce carbon emissions. Communication networks become a key to achieving smart grid benefits due to their capability of delivering data and control signals. However, there does not exist a unified approach to quantify how well a communication network supports smart grid applications. In this paper, effective capacity is exploited as a good candidate to quantitatively measure how well the communication network supports smart grid applications, regardless of specific network technologies. Case studies using the effective capacity are given and analyzed by simulations in different smart grid application scenarios.