{"title":"基于监督和非监督分类的文本挖掘安全相关Bug报告识别","authors":"K. Goseva-Popstojanova, Jacob Tyo","doi":"10.1109/QRS.2018.00047","DOIUrl":null,"url":null,"abstract":"While many prior works used text mining for automating different tasks related to software bug reports, few works considered the security aspects. This paper is focused on automated classification of software bug reports to security and not-security related, using both supervised and unsupervised approaches. For both approaches, three types of feature vectors are used. For supervised learning, we experiment with multiple classifiers and training sets with different sizes. Furthermore, we propose a novel unsupervised approach based on anomaly detection. The evaluation is based on three NASA datasets. The results showed that supervised classification is affected more by the learning algorithms than by feature vectors and training only on 25% of the data provides as good results as training on 90% of the data. The supervised learning slightly outperforms the unsupervised learning, at the expense of labeling the training set. In general, datasets with more security information lead to better performance.","PeriodicalId":114973,"journal":{"name":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Identification of Security Related Bug Reports via Text Mining Using Supervised and Unsupervised Classification\",\"authors\":\"K. Goseva-Popstojanova, Jacob Tyo\",\"doi\":\"10.1109/QRS.2018.00047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While many prior works used text mining for automating different tasks related to software bug reports, few works considered the security aspects. This paper is focused on automated classification of software bug reports to security and not-security related, using both supervised and unsupervised approaches. For both approaches, three types of feature vectors are used. For supervised learning, we experiment with multiple classifiers and training sets with different sizes. Furthermore, we propose a novel unsupervised approach based on anomaly detection. The evaluation is based on three NASA datasets. The results showed that supervised classification is affected more by the learning algorithms than by feature vectors and training only on 25% of the data provides as good results as training on 90% of the data. The supervised learning slightly outperforms the unsupervised learning, at the expense of labeling the training set. In general, datasets with more security information lead to better performance.\",\"PeriodicalId\":114973,\"journal\":{\"name\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS.2018.00047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS.2018.00047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Security Related Bug Reports via Text Mining Using Supervised and Unsupervised Classification
While many prior works used text mining for automating different tasks related to software bug reports, few works considered the security aspects. This paper is focused on automated classification of software bug reports to security and not-security related, using both supervised and unsupervised approaches. For both approaches, three types of feature vectors are used. For supervised learning, we experiment with multiple classifiers and training sets with different sizes. Furthermore, we propose a novel unsupervised approach based on anomaly detection. The evaluation is based on three NASA datasets. The results showed that supervised classification is affected more by the learning algorithms than by feature vectors and training only on 25% of the data provides as good results as training on 90% of the data. The supervised learning slightly outperforms the unsupervised learning, at the expense of labeling the training set. In general, datasets with more security information lead to better performance.