基于深度双向LSTM的混合语音识别

Alex Graves, N. Jaitly, Abdel-rahman Mohamed
{"title":"基于深度双向LSTM的混合语音识别","authors":"Alex Graves, N. Jaitly, Abdel-rahman Mohamed","doi":"10.1109/ASRU.2013.6707742","DOIUrl":null,"url":null,"abstract":"Deep Bidirectional LSTM (DBLSTM) recurrent neural networks have recently been shown to give state-of-the-art performance on the TIMIT speech database. However, the results in that work relied on recurrent-neural-network-specific objective functions, which are difficult to integrate with existing large vocabulary speech recognition systems. This paper investigates the use of DBLSTM as an acoustic model in a standard neural network-HMM hybrid system. We find that a DBLSTM-HMM hybrid gives equally good results on TIMIT as the previous work. It also outperforms both GMM and deep network benchmarks on a subset of the Wall Street Journal corpus. However the improvement in word error rate over the deep network is modest, despite a great increase in framelevel accuracy. We conclude that the hybrid approach with DBLSTM appears to be well suited for tasks where acoustic modelling predominates. Further investigation needs to be conducted to understand how to better leverage the improvements in frame-level accuracy towards better word error rates.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1517","resultStr":"{\"title\":\"Hybrid speech recognition with Deep Bidirectional LSTM\",\"authors\":\"Alex Graves, N. Jaitly, Abdel-rahman Mohamed\",\"doi\":\"10.1109/ASRU.2013.6707742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Bidirectional LSTM (DBLSTM) recurrent neural networks have recently been shown to give state-of-the-art performance on the TIMIT speech database. However, the results in that work relied on recurrent-neural-network-specific objective functions, which are difficult to integrate with existing large vocabulary speech recognition systems. This paper investigates the use of DBLSTM as an acoustic model in a standard neural network-HMM hybrid system. We find that a DBLSTM-HMM hybrid gives equally good results on TIMIT as the previous work. It also outperforms both GMM and deep network benchmarks on a subset of the Wall Street Journal corpus. However the improvement in word error rate over the deep network is modest, despite a great increase in framelevel accuracy. We conclude that the hybrid approach with DBLSTM appears to be well suited for tasks where acoustic modelling predominates. Further investigation needs to be conducted to understand how to better leverage the improvements in frame-level accuracy towards better word error rates.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1517\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1517

摘要

深度双向LSTM (DBLSTM)递归神经网络最近被证明在TIMIT语音数据库上具有最先进的性能。然而,这项工作的结果依赖于循环神经网络特定的目标函数,这很难与现有的大词汇量语音识别系统集成。本文研究了将DBLSTM作为标准神经网络- hmm混合系统的声学模型。我们发现DBLSTM-HMM混合在TIMIT上的效果与之前的工作一样好。在《华尔街日报》语料库的一个子集上,它的性能也优于GMM和深度网络基准。然而,在深度网络上,字错误率的改善是适度的,尽管帧级精度有很大的提高。我们得出结论,DBLSTM的混合方法似乎非常适合声学建模占主导地位的任务。需要进行进一步的研究,以了解如何更好地利用帧级准确性的改进来提高单词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid speech recognition with Deep Bidirectional LSTM
Deep Bidirectional LSTM (DBLSTM) recurrent neural networks have recently been shown to give state-of-the-art performance on the TIMIT speech database. However, the results in that work relied on recurrent-neural-network-specific objective functions, which are difficult to integrate with existing large vocabulary speech recognition systems. This paper investigates the use of DBLSTM as an acoustic model in a standard neural network-HMM hybrid system. We find that a DBLSTM-HMM hybrid gives equally good results on TIMIT as the previous work. It also outperforms both GMM and deep network benchmarks on a subset of the Wall Street Journal corpus. However the improvement in word error rate over the deep network is modest, despite a great increase in framelevel accuracy. We conclude that the hybrid approach with DBLSTM appears to be well suited for tasks where acoustic modelling predominates. Further investigation needs to be conducted to understand how to better leverage the improvements in frame-level accuracy towards better word error rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning filter banks within a deep neural network framework Efficient nearly error-less LVCSR decoding based on incremental forward and backward passes Porting concepts from DNNs back to GMMs Discriminative piecewise linear transformation based on deep learning for noise robust automatic speech recognition Acoustic modeling using transform-based phone-cluster adaptive training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1