基于梯度下降算法的压缩感知图像水印

Ana Cadjenovic, Jelena Bakic
{"title":"基于梯度下降算法的压缩感知图像水印","authors":"Ana Cadjenovic, Jelena Bakic","doi":"10.1109/MECO.2016.7525787","DOIUrl":null,"url":null,"abstract":"The procedure for image watermarking using only available image samples, is presented in the paper. Namely, watermark is embedded into a certain number of available image samples, where the samples positions are precisely determined in advance. Therefore, samples positions serve as a watermarking key. Block based Compessive Sensing reconstruction is performed in the paper, by using gradient algorithm. Procedure is tested on several natural images. Satisfactory watermark detection, as well as good reconstructed image quality, is obtained.","PeriodicalId":253666,"journal":{"name":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive sensing based image watermarking using gradient descent algorithm\",\"authors\":\"Ana Cadjenovic, Jelena Bakic\",\"doi\":\"10.1109/MECO.2016.7525787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The procedure for image watermarking using only available image samples, is presented in the paper. Namely, watermark is embedded into a certain number of available image samples, where the samples positions are precisely determined in advance. Therefore, samples positions serve as a watermarking key. Block based Compessive Sensing reconstruction is performed in the paper, by using gradient algorithm. Procedure is tested on several natural images. Satisfactory watermark detection, as well as good reconstructed image quality, is obtained.\",\"PeriodicalId\":253666,\"journal\":{\"name\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2016.7525787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2016.7525787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了仅使用可用图像样本进行图像水印的方法。即将水印嵌入到一定数量的可用图像样本中,这些样本的位置是预先精确确定的。因此,采样位置作为水印密钥。本文采用梯度算法实现了基于分块的压缩感知重构。程序在几个自然图像上进行了测试。得到了满意的水印检测结果和较好的重构图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressive sensing based image watermarking using gradient descent algorithm
The procedure for image watermarking using only available image samples, is presented in the paper. Namely, watermark is embedded into a certain number of available image samples, where the samples positions are precisely determined in advance. Therefore, samples positions serve as a watermarking key. Block based Compessive Sensing reconstruction is performed in the paper, by using gradient algorithm. Procedure is tested on several natural images. Satisfactory watermark detection, as well as good reconstructed image quality, is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Logo watermarking for speech signal protection in the compressive sensing scenario Unaliasing of undersampled spectra Driving behavior simulator of lane changing using user-designed interface Prediction of children diseases using semantics Comparative analysis of classification algorithms on three different datasets using WEKA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1