X. Yu, B. Chen, R. Cheng, Y. Qu, J. Han, R. Zhang, Y. Zhao
{"title":"利用sub - 1ns超快测量系统表征Ge CMOS中的快速阱","authors":"X. Yu, B. Chen, R. Cheng, Y. Qu, J. Han, R. Zhang, Y. Zhao","doi":"10.1109/IEDM.2016.7838519","DOIUrl":null,"url":null,"abstract":"Ge p- and n-MOSFETs with Al2O3/GeOx/Ge gate stack were fabricated and characterized using a novel sub-1 ns ultra-fast measurement system. Devices operation under the conditions, that applying Vg with the ultra-fast rise edge down to less than 1 ns are confirmed. It is found that the current degradation within the first 10 ns is much more significant than that from 100 ns to longer time due to the fast trapping effect. In additions, the trap density distributions in Ge MOSFETs inside Ec and Ev are measured and calculated.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fast-trap characterization in Ge CMOS using Sub-1 ns ultra-fast measurement system\",\"authors\":\"X. Yu, B. Chen, R. Cheng, Y. Qu, J. Han, R. Zhang, Y. Zhao\",\"doi\":\"10.1109/IEDM.2016.7838519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ge p- and n-MOSFETs with Al2O3/GeOx/Ge gate stack were fabricated and characterized using a novel sub-1 ns ultra-fast measurement system. Devices operation under the conditions, that applying Vg with the ultra-fast rise edge down to less than 1 ns are confirmed. It is found that the current degradation within the first 10 ns is much more significant than that from 100 ns to longer time due to the fast trapping effect. In additions, the trap density distributions in Ge MOSFETs inside Ec and Ev are measured and calculated.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast-trap characterization in Ge CMOS using Sub-1 ns ultra-fast measurement system
Ge p- and n-MOSFETs with Al2O3/GeOx/Ge gate stack were fabricated and characterized using a novel sub-1 ns ultra-fast measurement system. Devices operation under the conditions, that applying Vg with the ultra-fast rise edge down to less than 1 ns are confirmed. It is found that the current degradation within the first 10 ns is much more significant than that from 100 ns to longer time due to the fast trapping effect. In additions, the trap density distributions in Ge MOSFETs inside Ec and Ev are measured and calculated.