基于模糊规则系统的多目标规则选择与优化进化算法

R. Alcalá, J. Alcalá-Fdez, M. J. Gacto, F. Herrera
{"title":"基于模糊规则系统的多目标规则选择与优化进化算法","authors":"R. Alcalá, J. Alcalá-Fdez, M. J. Gacto, F. Herrera","doi":"10.1109/FUZZY.2007.4295566","DOIUrl":null,"url":null,"abstract":"Recently, multi-objective evolutionary algorithms have been also applied to improve the difficult tradeoff between interpretability and accuracy of fuzzy rule-based systems. It is know that both requirements are usually contradictory, however, a multi-objective genetic algorithm can obtain a set of solutions with different degrees of trade-off. This contribution presents a multi-objective evolutionary algorithm to obtain linguistic models with improved accuracy and the least number of possible rules. In order to minimize the number of rules and the system error, this model performs a rule selection and a tuning of the membership functions of an initial set of candidate linguistic fuzzy rules.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems\",\"authors\":\"R. Alcalá, J. Alcalá-Fdez, M. J. Gacto, F. Herrera\",\"doi\":\"10.1109/FUZZY.2007.4295566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, multi-objective evolutionary algorithms have been also applied to improve the difficult tradeoff between interpretability and accuracy of fuzzy rule-based systems. It is know that both requirements are usually contradictory, however, a multi-objective genetic algorithm can obtain a set of solutions with different degrees of trade-off. This contribution presents a multi-objective evolutionary algorithm to obtain linguistic models with improved accuracy and the least number of possible rules. In order to minimize the number of rules and the system error, this model performs a rule selection and a tuning of the membership functions of an initial set of candidate linguistic fuzzy rules.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

近年来,多目标进化算法也被用于改善模糊规则系统的可解释性和准确性之间的困难权衡。众所周知,这两种要求通常是相互矛盾的,而多目标遗传算法可以得到一组具有不同程度权衡的解。这一贡献提出了一种多目标进化算法,以提高准确性和尽可能少的规则数量获得语言模型。为了最小化规则数量和系统误差,该模型对候选语言模糊规则的初始集进行规则选择和隶属函数调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Objective Evolutionary Algorithm for Rule Selection and Tuning on Fuzzy Rule-Based Systems
Recently, multi-objective evolutionary algorithms have been also applied to improve the difficult tradeoff between interpretability and accuracy of fuzzy rule-based systems. It is know that both requirements are usually contradictory, however, a multi-objective genetic algorithm can obtain a set of solutions with different degrees of trade-off. This contribution presents a multi-objective evolutionary algorithm to obtain linguistic models with improved accuracy and the least number of possible rules. In order to minimize the number of rules and the system error, this model performs a rule selection and a tuning of the membership functions of an initial set of candidate linguistic fuzzy rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1