Jörg Stöcklein, Patrick Pogscheba, C. Geiger, V. Paelke
{"title":"MiReAS:用于室内飞艇控制策略迭代原型的混合现实软件框架","authors":"Jörg Stöcklein, Patrick Pogscheba, C. Geiger, V. Paelke","doi":"10.1145/1811158.1811164","DOIUrl":null,"url":null,"abstract":"Virtual prototyping has become an established design tool in complex interdisciplinary development processes using state-of-the-art virtual reality techniques. Due to numerous benefits virtual prototyping has seen increasing acceptance in recent years, especially in the development of systems that involve complex interactions between components or require the integration of newly developed hardware. Mixed reality, considered as an extension to VR, has high potential to support the development of complex systems that operate in a real world environment even further. In this paper we demonstrate that the principles of mixed reality prototyping can also be effectively applied to the development of complex systems if a structured process is defined and supported by a proper software framework. In our paper we present a system that supports an iterative approach to prototype complex dynamical systems. Using this approach allows the designer to seamlessly progress from an initial virtual prototype to the final system along the mixed reality continuum. We describe MiReAS, a mixed reality software framework that supports an iterative design evolution with arbitrary combinations of real and virtual elements. The use of the system is demonstrated by the development of interaction techniques and control strategies for an unmanned aerial vehicle.","PeriodicalId":325699,"journal":{"name":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MiReAS: a mixed reality software framework for iterative prototyping of control strategies for an indoor airship\",\"authors\":\"Jörg Stöcklein, Patrick Pogscheba, C. Geiger, V. Paelke\",\"doi\":\"10.1145/1811158.1811164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual prototyping has become an established design tool in complex interdisciplinary development processes using state-of-the-art virtual reality techniques. Due to numerous benefits virtual prototyping has seen increasing acceptance in recent years, especially in the development of systems that involve complex interactions between components or require the integration of newly developed hardware. Mixed reality, considered as an extension to VR, has high potential to support the development of complex systems that operate in a real world environment even further. In this paper we demonstrate that the principles of mixed reality prototyping can also be effectively applied to the development of complex systems if a structured process is defined and supported by a proper software framework. In our paper we present a system that supports an iterative approach to prototype complex dynamical systems. Using this approach allows the designer to seamlessly progress from an initial virtual prototype to the final system along the mixed reality continuum. We describe MiReAS, a mixed reality software framework that supports an iterative design evolution with arbitrary combinations of real and virtual elements. The use of the system is demonstrated by the development of interaction techniques and control strategies for an unmanned aerial vehicle.\",\"PeriodicalId\":325699,\"journal\":{\"name\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1811158.1811164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1811158.1811164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MiReAS: a mixed reality software framework for iterative prototyping of control strategies for an indoor airship
Virtual prototyping has become an established design tool in complex interdisciplinary development processes using state-of-the-art virtual reality techniques. Due to numerous benefits virtual prototyping has seen increasing acceptance in recent years, especially in the development of systems that involve complex interactions between components or require the integration of newly developed hardware. Mixed reality, considered as an extension to VR, has high potential to support the development of complex systems that operate in a real world environment even further. In this paper we demonstrate that the principles of mixed reality prototyping can also be effectively applied to the development of complex systems if a structured process is defined and supported by a proper software framework. In our paper we present a system that supports an iterative approach to prototype complex dynamical systems. Using this approach allows the designer to seamlessly progress from an initial virtual prototype to the final system along the mixed reality continuum. We describe MiReAS, a mixed reality software framework that supports an iterative design evolution with arbitrary combinations of real and virtual elements. The use of the system is demonstrated by the development of interaction techniques and control strategies for an unmanned aerial vehicle.