{"title":"强光-物质耦合中的新效应","authors":"M. Ruggenthaler","doi":"10.1117/12.2593707","DOIUrl":null,"url":null,"abstract":"In the last decade a host of seminal experimental results have demonstrated that properties and dynamics of molecules and solids can be modified and controlled by coupling strongly to the electromagentic field of a photonic environment, e.g. an optical cavity. For a detailed understanding of such changes it becomes necessary to use first-principles approaches to strong light-matter interactions. \n \nIn this talk I will discuss the fundamental setting for such ab-initio methods, the Pauli-Fierz quantum field theory in Coulomb gauge, introduce quantum-electrodynamical density-functional theory as an efficient and accurate simulation technique and highlight novel effects that become accessible. Among others I demonstrate how conduction and absorption properties are modified, how collective strong coupling can induce strong local modifications and how bound states in the continuum appear.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel effects in strong light-matter coupling\",\"authors\":\"M. Ruggenthaler\",\"doi\":\"10.1117/12.2593707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last decade a host of seminal experimental results have demonstrated that properties and dynamics of molecules and solids can be modified and controlled by coupling strongly to the electromagentic field of a photonic environment, e.g. an optical cavity. For a detailed understanding of such changes it becomes necessary to use first-principles approaches to strong light-matter interactions. \\n \\nIn this talk I will discuss the fundamental setting for such ab-initio methods, the Pauli-Fierz quantum field theory in Coulomb gauge, introduce quantum-electrodynamical density-functional theory as an efficient and accurate simulation technique and highlight novel effects that become accessible. Among others I demonstrate how conduction and absorption properties are modified, how collective strong coupling can induce strong local modifications and how bound states in the continuum appear.\",\"PeriodicalId\":389503,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In the last decade a host of seminal experimental results have demonstrated that properties and dynamics of molecules and solids can be modified and controlled by coupling strongly to the electromagentic field of a photonic environment, e.g. an optical cavity. For a detailed understanding of such changes it becomes necessary to use first-principles approaches to strong light-matter interactions.
In this talk I will discuss the fundamental setting for such ab-initio methods, the Pauli-Fierz quantum field theory in Coulomb gauge, introduce quantum-electrodynamical density-functional theory as an efficient and accurate simulation technique and highlight novel effects that become accessible. Among others I demonstrate how conduction and absorption properties are modified, how collective strong coupling can induce strong local modifications and how bound states in the continuum appear.