医学语义文本相似度的领域自适应

Jimeng Sun, Si Li
{"title":"医学语义文本相似度的领域自适应","authors":"Jimeng Sun, Si Li","doi":"10.1109/IC-NIDC54101.2021.9660484","DOIUrl":null,"url":null,"abstract":"Semantic textual similarity is a common task to determine whether two sentences in a pair own the same meaning. In the medical domain, the annotated data is limited and sparse, which brings great difficulty to obtain accurate semantic information from it. In this paper, we propose a two-stream model to adapt knowledge learned from other domains to the medical domain. To optimize and reduce the computation, we further compress the proposed model by knowledge distillation. Experimental results show that our proposed method achieves better performance than the baseline methods.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Domain Adaptation for Medical Semantic Textual Similarity\",\"authors\":\"Jimeng Sun, Si Li\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic textual similarity is a common task to determine whether two sentences in a pair own the same meaning. In the medical domain, the annotated data is limited and sparse, which brings great difficulty to obtain accurate semantic information from it. In this paper, we propose a two-stream model to adapt knowledge learned from other domains to the medical domain. To optimize and reduce the computation, we further compress the proposed model by knowledge distillation. Experimental results show that our proposed method achieves better performance than the baseline methods.\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义文本相似度是确定一对句子中两个句子是否具有相同意思的常用任务。在医学领域,标注的数据有限且稀疏,这给获取准确的语义信息带来了很大的困难。在本文中,我们提出了一个双流模型来适应从其他领域学习到的知识到医学领域。为了优化和减少计算量,我们进一步利用知识蒸馏对模型进行压缩。实验结果表明,该方法比基线方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Adaptation for Medical Semantic Textual Similarity
Semantic textual similarity is a common task to determine whether two sentences in a pair own the same meaning. In the medical domain, the annotated data is limited and sparse, which brings great difficulty to obtain accurate semantic information from it. In this paper, we propose a two-stream model to adapt knowledge learned from other domains to the medical domain. To optimize and reduce the computation, we further compress the proposed model by knowledge distillation. Experimental results show that our proposed method achieves better performance than the baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Dense FAQ Retrieval with Synthetic Training A Security Integrated Attestation Scheme for Embedded Devices Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism Convolutional Neural Network Based Transmit Power Control for D2D Communication in Unlicensed Spectrum WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1