改进电力系统波形ROCOF评估的阶跃变化检测

Alexandra Karpilow, M. Paolone, A. Derviškadić, G. Frigo
{"title":"改进电力系统波形ROCOF评估的阶跃变化检测","authors":"Alexandra Karpilow, M. Paolone, A. Derviškadić, G. Frigo","doi":"10.1109/SGSMA51733.2022.9806005","DOIUrl":null,"url":null,"abstract":"In the analysis of power grid waveforms, the presence of amplitude or phase steps can disrupt the estimation of frequency and rate-of-change-of-frequency (ROCOF). Standard methods based on phasor-models fail in the extraction of signal parameters during these signal dynamics, often yielding large frequency and ROCOF deviations. To address this challenge, we propose a technique that approximates components of the signal (e.g., amplitude and frequency variations) using dictionaries based on parameterized models of common signal dynamics. Distinct from a previous iteration of this method developed by the authors, the proposed technique allows for the identification of multiple steps in a window, as well as the presence of interfering tones. The method is shown to improve signal reconstruction when applied to real-world waveforms, as compared to standard static and dynamic phasor-based algorithms.","PeriodicalId":256954,"journal":{"name":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Step Change Detection for Improved ROCOF Evaluation of Power System Waveforms\",\"authors\":\"Alexandra Karpilow, M. Paolone, A. Derviškadić, G. Frigo\",\"doi\":\"10.1109/SGSMA51733.2022.9806005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the analysis of power grid waveforms, the presence of amplitude or phase steps can disrupt the estimation of frequency and rate-of-change-of-frequency (ROCOF). Standard methods based on phasor-models fail in the extraction of signal parameters during these signal dynamics, often yielding large frequency and ROCOF deviations. To address this challenge, we propose a technique that approximates components of the signal (e.g., amplitude and frequency variations) using dictionaries based on parameterized models of common signal dynamics. Distinct from a previous iteration of this method developed by the authors, the proposed technique allows for the identification of multiple steps in a window, as well as the presence of interfering tones. The method is shown to improve signal reconstruction when applied to real-world waveforms, as compared to standard static and dynamic phasor-based algorithms.\",\"PeriodicalId\":256954,\"journal\":{\"name\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SGSMA51733.2022.9806005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SGSMA51733.2022.9806005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在分析电网波形时,振幅或相位阶跃的存在会干扰频率和频率变化率(ROCOF)的估计。在这些信号动力学过程中,基于相量模型的标准方法无法提取信号参数,通常会产生较大的频率和ROCOF偏差。为了解决这一挑战,我们提出了一种技术,该技术使用基于常见信号动力学参数化模型的字典来近似信号的组成部分(例如,幅度和频率变化)。与作者开发的该方法的先前迭代不同,所提出的技术允许识别窗口中的多个步骤,以及干扰音的存在。与标准的基于静态和动态相量的算法相比,该方法在应用于实际波形时可以改善信号重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Step Change Detection for Improved ROCOF Evaluation of Power System Waveforms
In the analysis of power grid waveforms, the presence of amplitude or phase steps can disrupt the estimation of frequency and rate-of-change-of-frequency (ROCOF). Standard methods based on phasor-models fail in the extraction of signal parameters during these signal dynamics, often yielding large frequency and ROCOF deviations. To address this challenge, we propose a technique that approximates components of the signal (e.g., amplitude and frequency variations) using dictionaries based on parameterized models of common signal dynamics. Distinct from a previous iteration of this method developed by the authors, the proposed technique allows for the identification of multiple steps in a window, as well as the presence of interfering tones. The method is shown to improve signal reconstruction when applied to real-world waveforms, as compared to standard static and dynamic phasor-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Using a Simple Feature for Detecting Multiple Types of Events From PMU Data Using Synchrophasor Status Word as Data Quality Indicator: What to Expect in the Field? Centralised system for overfrequency real-time dynamic settings for generators Dynamic Performance Comparison and Prediction based on Distribution-level Phasor Measurement Units A Reconfigurable Synchrophasor Synchronization Gateway & Controller Architecture for DERs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1