维基百科疾病文章:其内容和演变分析

Gerardo Lagunes García, Lucía Prieto Santamaría, Eduardo P. García del Valle, M. Zanin, Ernestina Menasalvas Ruiz, A. R. González
{"title":"维基百科疾病文章:其内容和演变分析","authors":"Gerardo Lagunes García, Lucía Prieto Santamaría, Eduardo P. García del Valle, M. Zanin, Ernestina Menasalvas Ruiz, A. R. González","doi":"10.1109/CBMS.2019.00136","DOIUrl":null,"url":null,"abstract":"Nowadays there is a huge amount of medical information that can be retrieved from different sources, both structured and unstructured. Internet has plenty of textual sources with medical knowledge (books, scientific papers, specialized web pages, etc.), but not all of them are publicly available. Wikipedia is a free, open and worldwide accessible source of knowledge. It contains more than 150,000 articles of medical content in the form of texts (non-structured information) that can be mined. The aim of this work is to study whether the evolution of information contained in Wikipedia medical articles can be used in a research context. The study has been focused on extracting the elements, from Wikipedia disease articles, that can be used to guide a diagnosis process, support the creation of diagnostic systems, or analyze the similarities between diseases, among others.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wikipedia Disease Articles: An Analysis of their Content and Evolution\",\"authors\":\"Gerardo Lagunes García, Lucía Prieto Santamaría, Eduardo P. García del Valle, M. Zanin, Ernestina Menasalvas Ruiz, A. R. González\",\"doi\":\"10.1109/CBMS.2019.00136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays there is a huge amount of medical information that can be retrieved from different sources, both structured and unstructured. Internet has plenty of textual sources with medical knowledge (books, scientific papers, specialized web pages, etc.), but not all of them are publicly available. Wikipedia is a free, open and worldwide accessible source of knowledge. It contains more than 150,000 articles of medical content in the form of texts (non-structured information) that can be mined. The aim of this work is to study whether the evolution of information contained in Wikipedia medical articles can be used in a research context. The study has been focused on extracting the elements, from Wikipedia disease articles, that can be used to guide a diagnosis process, support the creation of diagnostic systems, or analyze the similarities between diseases, among others.\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现在有大量的医学信息可以从不同的来源检索,包括结构化和非结构化。互联网上有大量医学知识的文本来源(书籍、科学论文、专业网页等),但并非所有这些都是公开的。维基百科是一个免费的、开放的、全世界都可以访问的知识来源。它包含超过15万篇可以挖掘的文本形式的医学内容(非结构化信息)。这项工作的目的是研究维基百科医学文章中包含的信息的演变是否可以用于研究背景。这项研究的重点是从维基百科疾病文章中提取可用于指导诊断过程、支持创建诊断系统或分析疾病之间的相似性等的元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wikipedia Disease Articles: An Analysis of their Content and Evolution
Nowadays there is a huge amount of medical information that can be retrieved from different sources, both structured and unstructured. Internet has plenty of textual sources with medical knowledge (books, scientific papers, specialized web pages, etc.), but not all of them are publicly available. Wikipedia is a free, open and worldwide accessible source of knowledge. It contains more than 150,000 articles of medical content in the form of texts (non-structured information) that can be mined. The aim of this work is to study whether the evolution of information contained in Wikipedia medical articles can be used in a research context. The study has been focused on extracting the elements, from Wikipedia disease articles, that can be used to guide a diagnosis process, support the creation of diagnostic systems, or analyze the similarities between diseases, among others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysing the Performance of a Real-Time Healthcare 4.0 System using Shared Frailty Time to Event Models Performance of Data Enhancements and Training Optimization for Neural Network: A Polyp Detection Case Study I Know How you Feel Now, and Here's why!: Demystifying Time-Continuous High Resolution Text-Based Affect Predictions in the Wild Identifying Diabetic Retinopathy from OCT Images using Deep Transfer Learning with Artificial Neural Networks Towards an Analysis of Post-Transcriptional Gene Regulation in Psoriasis via microRNAs using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1