基于双向GRU网络的多普勒雷达精确心跳检测

Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin
{"title":"基于双向GRU网络的多普勒雷达精确心跳检测","authors":"Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin","doi":"10.1109/RWS55624.2023.10046202","DOIUrl":null,"url":null,"abstract":"Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.","PeriodicalId":110742,"journal":{"name":"2023 IEEE Radio and Wireless Symposium (RWS)","volume":"2197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Heart Beat Detection with Doppler Radar using Bidirectional GRU Network\",\"authors\":\"Hui Lu, Markus Heyder, Marvin Wenzel, Nils C. Albrecht, Dominik Langer, Alexander Koelpin\",\"doi\":\"10.1109/RWS55624.2023.10046202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.\",\"PeriodicalId\":110742,\"journal\":{\"name\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"2197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS55624.2023.10046202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55624.2023.10046202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心率是医疗保健中最关键、最重要的生命体征之一。虽然心电图(ECG)是心率监测的金标准程序,但在许多应用中,如长期监测,非接触式监测是首选。雷达系统通过测量由心跳引起的胸部微小运动来实现非接触式传感。在本文中,我们提出了一种基于机器学习的方法,使用双向门控循环单元(bi-GRU)网络进行准确的心跳检测。在心音和脉搏波频率范围内进行带通滤波的同相(I)和正交(Q)信号融合。本文方法的心跳检测F1得分高达98.06%,优于当前静息场景下F1得分95.62%的方法。在使用倾斜表的倾斜场景中,F1得分显著提高了10%。此外,在静息情况下,中位心跳间隔(IBIs) RMSE仅为22.07 ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate Heart Beat Detection with Doppler Radar using Bidirectional GRU Network
Heart rate is one of the most critical and important vital signs in healthcare. While electrocardiography (ECG) is gold-standard procedure for heart rate monitoring, contactless monitoring is preferred in many applications like long-term monitoring. Radar systems enable contactless sensing by measuring small movements on the chest induced by the heart beat. In this paper, we present a machine learning-based method using a bidirectional gated recurrent unit (bi-GRU) network for accurate heartbeat detection. Band-pass filtered in-phase (I) and quadrature (Q) signals in heart sound and pulse wave frequency ranges were fused. The proposed method achieves a high F1 score of 98.06% for heart beat detection, thus outperforming the state-of-the-art method with an F1 score of 95.62% in the resting scenario. In the tilt-up scenario with the tilt table, F1 score is significantly improved by 10%. Besides, a median inter-beat intervals (IBIs) RMSE of only 22.07 ms in the resting scenario is realized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-Rejection Up-/Down-Converter LO Distribution Chain for 5G mm-wave Phased-Array Systems Compact Half-Mode Triple-Band Bandpass Filter by using Stepped Impedance Resonators with Grounding Via Holes Performance Analysis for Coded Wireless Steganography System with OFDM Signaling Design and Analysis of a RF Front-End Receiver System Based on Multi-Layer Organic Filtering for Sub-6 GHz Mobile Communication Applications Improving Coding Efficiency in All-digital Transmitters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1