{"title":"具有高静态增益和吸收调制的有源MQW层的仿真与设计","authors":"M. Peschke, T. Knoedl, B. Stegmueller","doi":"10.1109/NUSOD.2003.1259030","DOIUrl":null,"url":null,"abstract":"We present detailed theoretical and experimental investigations on gain and absorption spectra of multi-type AlGaInAs QW structures in the 1.3 /spl mu/m wavelength regime. Such QW combination offer the possibility of efficient forward and reverse operation, e.g. as required for monolithically integrated laser-modulator devices. Measurement results are in good agreement with theoretical predictions, achieving a basic modal absorption as low as 60 cm/sup -1/, a maximum absorption change of 100 cm&/sup -1/V/sup -1/ and a DFB threshold current of 17 mA at room temperature. With the developed procedure and extracted parameters, a powerful tool is available to optimize the static gain and absorption modulation of single-and multi-type AlGaInAs QWs.","PeriodicalId":206987,"journal":{"name":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Simulation and design of an active MQW layer with high static gain and absorption modulation\",\"authors\":\"M. Peschke, T. Knoedl, B. Stegmueller\",\"doi\":\"10.1109/NUSOD.2003.1259030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present detailed theoretical and experimental investigations on gain and absorption spectra of multi-type AlGaInAs QW structures in the 1.3 /spl mu/m wavelength regime. Such QW combination offer the possibility of efficient forward and reverse operation, e.g. as required for monolithically integrated laser-modulator devices. Measurement results are in good agreement with theoretical predictions, achieving a basic modal absorption as low as 60 cm/sup -1/, a maximum absorption change of 100 cm&/sup -1/V/sup -1/ and a DFB threshold current of 17 mA at room temperature. With the developed procedure and extracted parameters, a powerful tool is available to optimize the static gain and absorption modulation of single-and multi-type AlGaInAs QWs.\",\"PeriodicalId\":206987,\"journal\":{\"name\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2003.1259030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2003.1259030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and design of an active MQW layer with high static gain and absorption modulation
We present detailed theoretical and experimental investigations on gain and absorption spectra of multi-type AlGaInAs QW structures in the 1.3 /spl mu/m wavelength regime. Such QW combination offer the possibility of efficient forward and reverse operation, e.g. as required for monolithically integrated laser-modulator devices. Measurement results are in good agreement with theoretical predictions, achieving a basic modal absorption as low as 60 cm/sup -1/, a maximum absorption change of 100 cm&/sup -1/V/sup -1/ and a DFB threshold current of 17 mA at room temperature. With the developed procedure and extracted parameters, a powerful tool is available to optimize the static gain and absorption modulation of single-and multi-type AlGaInAs QWs.