{"title":"强化参考应力法在循环弯曲板表面裂纹疲劳扩展中的应用","authors":"Ippei Yamasaki, T. Fujioka, Y. Shindo, Y. Kaneko","doi":"10.1115/PVP2018-84233","DOIUrl":null,"url":null,"abstract":"This paper describes an experimental validation of the enhanced reference stress method to calculate fatigue J-integral ranges, which are effective in predicting the fatigue crack propagation rate under low–cycle fatigue loadings. Although J-integral type fracture mechanics parameters can be calculated via elastic–plastic finite element analysis (FEA) of the crack geometry, performing such an analysis is costly and requires a high–end computer. A simplified method for estimating the elastic–plastic J-integral is therefore desired. Herein, several representative simplified methods for estimating the elastic–plastic J-integral were applied to crack propagation prediction and compared with each other. The experiments referred to was a previously performed cyclic bending tests using wide–plate specimens containing a semielliptical surface crack. Limit load correction factors to improve the accuracy of the reference stress method were estimated by performing an elastic–plastic FEA. The predicted crack propagation behaviors were compared against the test results.","PeriodicalId":128383,"journal":{"name":"Volume 1A: Codes and Standards","volume":"11 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the Enhanced Reference Stress Method to Fatigue Propagation of a Surface Crack in a Plate Subjected to Cyclic Bending\",\"authors\":\"Ippei Yamasaki, T. Fujioka, Y. Shindo, Y. Kaneko\",\"doi\":\"10.1115/PVP2018-84233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an experimental validation of the enhanced reference stress method to calculate fatigue J-integral ranges, which are effective in predicting the fatigue crack propagation rate under low–cycle fatigue loadings. Although J-integral type fracture mechanics parameters can be calculated via elastic–plastic finite element analysis (FEA) of the crack geometry, performing such an analysis is costly and requires a high–end computer. A simplified method for estimating the elastic–plastic J-integral is therefore desired. Herein, several representative simplified methods for estimating the elastic–plastic J-integral were applied to crack propagation prediction and compared with each other. The experiments referred to was a previously performed cyclic bending tests using wide–plate specimens containing a semielliptical surface crack. Limit load correction factors to improve the accuracy of the reference stress method were estimated by performing an elastic–plastic FEA. The predicted crack propagation behaviors were compared against the test results.\",\"PeriodicalId\":128383,\"journal\":{\"name\":\"Volume 1A: Codes and Standards\",\"volume\":\"11 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1A: Codes and Standards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1A: Codes and Standards","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of the Enhanced Reference Stress Method to Fatigue Propagation of a Surface Crack in a Plate Subjected to Cyclic Bending
This paper describes an experimental validation of the enhanced reference stress method to calculate fatigue J-integral ranges, which are effective in predicting the fatigue crack propagation rate under low–cycle fatigue loadings. Although J-integral type fracture mechanics parameters can be calculated via elastic–plastic finite element analysis (FEA) of the crack geometry, performing such an analysis is costly and requires a high–end computer. A simplified method for estimating the elastic–plastic J-integral is therefore desired. Herein, several representative simplified methods for estimating the elastic–plastic J-integral were applied to crack propagation prediction and compared with each other. The experiments referred to was a previously performed cyclic bending tests using wide–plate specimens containing a semielliptical surface crack. Limit load correction factors to improve the accuracy of the reference stress method were estimated by performing an elastic–plastic FEA. The predicted crack propagation behaviors were compared against the test results.