{"title":"流语音异构并行隐写的快速检测","authors":"Huili Wang, Zhongliang Yang, Yuting Hu, Zhen Yang, Yongfeng Huang","doi":"10.1145/3437880.3460404","DOIUrl":null,"url":null,"abstract":"Heterogeneous parallel steganography (HPS) has become a new trend of current streaming media voice steganography, which hides secret information in the frames of streaming media with multiple kinds of orthogonal steganography. Because of the complexity and imperceptibility of HPS, detecting its existence is a challenge for previous steganalysis methods, especially in the case of short sliding window length and low embedding rate. In order to improve the situation, we design a fast and efficient detection method named the key feature extraction and fusion network (KFEF) based on attention mechanism. The proposed model is able to effectively extract the key characteristic of the exceptions due to steganography and fuse the extracted features for different steganographic algorithms used in HPS. Experimental results show that the proposed method significantly improves the classification accuracy in detecting both low embedding rate samples and short segment samples. In addition, the detection time consumption is shorter than other methods and meets real-time requirements. Finally, with the help of attention we can predict the approximate locations of secret information which may bring new ideas to further steganalysis.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Detection of Heterogeneous Parallel Steganography for Streaming Voice\",\"authors\":\"Huili Wang, Zhongliang Yang, Yuting Hu, Zhen Yang, Yongfeng Huang\",\"doi\":\"10.1145/3437880.3460404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heterogeneous parallel steganography (HPS) has become a new trend of current streaming media voice steganography, which hides secret information in the frames of streaming media with multiple kinds of orthogonal steganography. Because of the complexity and imperceptibility of HPS, detecting its existence is a challenge for previous steganalysis methods, especially in the case of short sliding window length and low embedding rate. In order to improve the situation, we design a fast and efficient detection method named the key feature extraction and fusion network (KFEF) based on attention mechanism. The proposed model is able to effectively extract the key characteristic of the exceptions due to steganography and fuse the extracted features for different steganographic algorithms used in HPS. Experimental results show that the proposed method significantly improves the classification accuracy in detecting both low embedding rate samples and short segment samples. In addition, the detection time consumption is shorter than other methods and meets real-time requirements. Finally, with the help of attention we can predict the approximate locations of secret information which may bring new ideas to further steganalysis.\",\"PeriodicalId\":120300,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3437880.3460404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3460404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Detection of Heterogeneous Parallel Steganography for Streaming Voice
Heterogeneous parallel steganography (HPS) has become a new trend of current streaming media voice steganography, which hides secret information in the frames of streaming media with multiple kinds of orthogonal steganography. Because of the complexity and imperceptibility of HPS, detecting its existence is a challenge for previous steganalysis methods, especially in the case of short sliding window length and low embedding rate. In order to improve the situation, we design a fast and efficient detection method named the key feature extraction and fusion network (KFEF) based on attention mechanism. The proposed model is able to effectively extract the key characteristic of the exceptions due to steganography and fuse the extracted features for different steganographic algorithms used in HPS. Experimental results show that the proposed method significantly improves the classification accuracy in detecting both low embedding rate samples and short segment samples. In addition, the detection time consumption is shorter than other methods and meets real-time requirements. Finally, with the help of attention we can predict the approximate locations of secret information which may bring new ideas to further steganalysis.