跨页面搜索的框架

Zhumin Chen, Byron J. Gao, Qi Kang
{"title":"跨页面搜索的框架","authors":"Zhumin Chen, Byron J. Gao, Qi Kang","doi":"10.1145/2396761.2398733","DOIUrl":null,"url":null,"abstract":"Existing search engines have page as the unit of information of retrieval. They typically return a ranked list of pages, each being a search result containing the query keywords. This within-one-page constraint disallows utilization of relationship information that is often available and greatly beneficial. To utilize relationship information and improve search precision, we explore cross-page search, where each answer is a logical page consisting of multiple closely related pages that collectively contain the query keywords. We have implemented a prototype Cager, providing cross-page search and visualization over real dataset.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cager: a framework for cross-page search\",\"authors\":\"Zhumin Chen, Byron J. Gao, Qi Kang\",\"doi\":\"10.1145/2396761.2398733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing search engines have page as the unit of information of retrieval. They typically return a ranked list of pages, each being a search result containing the query keywords. This within-one-page constraint disallows utilization of relationship information that is often available and greatly beneficial. To utilize relationship information and improve search precision, we explore cross-page search, where each answer is a logical page consisting of multiple closely related pages that collectively contain the query keywords. We have implemented a prototype Cager, providing cross-page search and visualization over real dataset.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2398733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的搜索引擎以页面作为检索信息的单位。它们通常返回一个页面排序列表,每个页面都是包含查询关键字的搜索结果。这种单页约束不允许使用通常可用且非常有益的关系信息。为了利用关系信息并提高搜索精度,我们探索了跨页面搜索,其中每个答案是由多个紧密相关的页面组成的逻辑页面,这些页面共同包含查询关键字。我们已经实现了一个原型Cager,提供真实数据集的跨页面搜索和可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cager: a framework for cross-page search
Existing search engines have page as the unit of information of retrieval. They typically return a ranked list of pages, each being a search result containing the query keywords. This within-one-page constraint disallows utilization of relationship information that is often available and greatly beneficial. To utilize relationship information and improve search precision, we explore cross-page search, where each answer is a logical page consisting of multiple closely related pages that collectively contain the query keywords. We have implemented a prototype Cager, providing cross-page search and visualization over real dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting web search success with fine-grained interaction data User activity profiling with multi-layer analysis Search result presentation based on faceted clustering Domain dependent query reformulation for web search CrowdTiles: presenting crowd-based information for event-driven information needs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1