连续流介质喷雾条件下蔓越莓微波渗透脱水研究

Derek Wray, H. Ramaswamy
{"title":"连续流介质喷雾条件下蔓越莓微波渗透脱水研究","authors":"Derek Wray, H. Ramaswamy","doi":"10.1155/2013/207308","DOIUrl":null,"url":null,"abstract":"Microwave-osmotic dehydration of cranberries was evaluated under continuous flow medium spray (MWODS) conditions after some pretreatments. A central composite rotatable design was used with three input variables at five levels (temperature, 33°C–67°C; sucrose concentration, 33°B–67°B; and contact time, 5–55 min). Responses were moisture loss (ML), solids gain (SG), and weight reduction (WR) as well as color and texture parameters. The responses were related to process variables using response surface methodology and statistical analysis: each model was tested for lack of fit to assure nonsignificance <path id=\"x1D443\" d=\"M619 482q0 -69 -40.5 -119t-96 -72.5t-118.5 -26.5h-44l-70 20l-31 -151q-14 -67 0.5 -83t89.5 -22l-5 -28h-287l8 28q65 7 81.5 22t29.5 83l79 398q12 56 0.5 70.5t-78.5 20.5l7 28h255q108 0 164 -43t56 -125zM524 478q0 141 -146 141q-25 0 -47 -8q-16 -6 -20.5 -13.5\nt-10.5 -39.5l-43 -241q37 -13 83 -13q67 0 125.5 45t58.5 129z\" /> <path id=\"x30\" d=\"M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105\nq0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z\" /> <path id=\"x35\" d=\"M153 550l-26 -186q79 31 111 31q90 0 141.5 -51t51.5 -119q0 -93 -89 -166q-85 -69 -173 -71q-32 0 -61.5 11.5t-41.5 23.5q-18 17 -17 34q2 16 22 33q14 9 26 -1q61 -50 124 -50q60 0 93 43.5t33 104.5q0 69 -41.5 110t-121.5 41q-53 0 -102 -20l38 305h286l6 -8\nl-26 -65h-233z\" /> and each process variable was tested for significance . Temperature was found to have the most prominent effect as it was significant with all drying (ML, SG, and WR) and quality (hardness and chewiness) parameters, while contact time was found to be significant with ML and WR. Concentration wasn’t found to be significant for any response. Increasing skin pretreatment severity generally promoted SG but had little effect on ML. The exception was chemical peeling, which favored ML but had no effect on SG. Overall, MWODS enables food dehydration in a much faster period of time than conventional osmotic dehydration (COD), while specifically promoting moisture loss over solids gain.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Microwave-Osmotic Dehydration of Cranberries under Continuous Flow Medium Spray Conditions\",\"authors\":\"Derek Wray, H. Ramaswamy\",\"doi\":\"10.1155/2013/207308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave-osmotic dehydration of cranberries was evaluated under continuous flow medium spray (MWODS) conditions after some pretreatments. A central composite rotatable design was used with three input variables at five levels (temperature, 33°C–67°C; sucrose concentration, 33°B–67°B; and contact time, 5–55 min). Responses were moisture loss (ML), solids gain (SG), and weight reduction (WR) as well as color and texture parameters. The responses were related to process variables using response surface methodology and statistical analysis: each model was tested for lack of fit to assure nonsignificance <path id=\\\"x1D443\\\" d=\\\"M619 482q0 -69 -40.5 -119t-96 -72.5t-118.5 -26.5h-44l-70 20l-31 -151q-14 -67 0.5 -83t89.5 -22l-5 -28h-287l8 28q65 7 81.5 22t29.5 83l79 398q12 56 0.5 70.5t-78.5 20.5l7 28h255q108 0 164 -43t56 -125zM524 478q0 141 -146 141q-25 0 -47 -8q-16 -6 -20.5 -13.5\\nt-10.5 -39.5l-43 -241q37 -13 83 -13q67 0 125.5 45t58.5 129z\\\" /> <path id=\\\"x30\\\" d=\\\"M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105\\nq0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z\\\" /> <path id=\\\"x35\\\" d=\\\"M153 550l-26 -186q79 31 111 31q90 0 141.5 -51t51.5 -119q0 -93 -89 -166q-85 -69 -173 -71q-32 0 -61.5 11.5t-41.5 23.5q-18 17 -17 34q2 16 22 33q14 9 26 -1q61 -50 124 -50q60 0 93 43.5t33 104.5q0 69 -41.5 110t-121.5 41q-53 0 -102 -20l38 305h286l6 -8\\nl-26 -65h-233z\\\" /> and each process variable was tested for significance . Temperature was found to have the most prominent effect as it was significant with all drying (ML, SG, and WR) and quality (hardness and chewiness) parameters, while contact time was found to be significant with ML and WR. Concentration wasn’t found to be significant for any response. Increasing skin pretreatment severity generally promoted SG but had little effect on ML. The exception was chemical peeling, which favored ML but had no effect on SG. Overall, MWODS enables food dehydration in a much faster period of time than conventional osmotic dehydration (COD), while specifically promoting moisture loss over solids gain.\",\"PeriodicalId\":232251,\"journal\":{\"name\":\"International Journal of Microwave Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microwave Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/207308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/207308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在连续流介质喷雾(MWODS)条件下,经过一定的预处理,对蔓越莓的微波渗透脱水进行了评价。采用中心复合可旋转设计,三个输入变量在五个水平(温度,33°C - 67°C;蔗糖浓度,33°B - 67°B;接触时间,5-55分钟)。反应包括水分损失(ML)、固体增加(SG)、重量减轻(WR)以及颜色和质地参数。使用响应面方法和统计分析将响应与过程变量相关:对每个模型进行缺乏拟合测试以确保不显著性,并对每个过程变量进行显著性测试。温度对干燥(ML、SG和WR)和质量(硬度和嚼劲)参数的影响最为显著,而接触时间对ML和WR的影响最为显著。没有发现浓度对任何反应有显著影响。增加皮肤预处理程度一般会促进SG,但对ML影响不大。化学剥皮则例外,有利于ML,但对SG没有影响。总的来说,MWODS使食物在比传统渗透脱水(COD)更快的时间内脱水,同时特别促进水分损失而不是固体增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microwave-Osmotic Dehydration of Cranberries under Continuous Flow Medium Spray Conditions
Microwave-osmotic dehydration of cranberries was evaluated under continuous flow medium spray (MWODS) conditions after some pretreatments. A central composite rotatable design was used with three input variables at five levels (temperature, 33°C–67°C; sucrose concentration, 33°B–67°B; and contact time, 5–55 min). Responses were moisture loss (ML), solids gain (SG), and weight reduction (WR) as well as color and texture parameters. The responses were related to process variables using response surface methodology and statistical analysis: each model was tested for lack of fit to assure nonsignificance and each process variable was tested for significance . Temperature was found to have the most prominent effect as it was significant with all drying (ML, SG, and WR) and quality (hardness and chewiness) parameters, while contact time was found to be significant with ML and WR. Concentration wasn’t found to be significant for any response. Increasing skin pretreatment severity generally promoted SG but had little effect on ML. The exception was chemical peeling, which favored ML but had no effect on SG. Overall, MWODS enables food dehydration in a much faster period of time than conventional osmotic dehydration (COD), while specifically promoting moisture loss over solids gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of Cracks in Concrete Structure Using Microwave Imaging Technique Reconfigurable and Tunable Filtenna for Cognitive LTE Femtocell Base Stations A Frequency Agile Semicircular Slot Antenna For Cognitive Radio System Ultrawideband Noise Radar Tomography: Principles, Simulation, and Experimental Validation Comparative Assessment of GaN as a Microwave Source with Si and SiC for Mixed Mode Operation at Submillimetre Wave Band of Frequency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1