基于机器学习的认知无线电粗频带分类

Inna Valieva, B. Shashidhar, M. Björkman, J. Åkerberg, Mikael Ekström, I. Voitenko
{"title":"基于机器学习的认知无线电粗频带分类","authors":"Inna Valieva, B. Shashidhar, M. Björkman, J. Åkerberg, Mikael Ekström, I. Voitenko","doi":"10.1109/ECTI-CON58255.2023.10153155","DOIUrl":null,"url":null,"abstract":"This paper is focused on multiple supervised machine learning algorithms’ performance evaluation in terms of classification accuracy and speed for the blind frequency bands classification into three occupancy classes: white, gray, and black spaces for potential implementation in cognitive radio application. Training and validation data sets consisting of 180 000 samples, including 60 000 samples per class, have been collected in the controlled experiment. Data samples have been generated using a hardware signal generator and recorded on the receiver’s front end as the time-domain complex signals. Gray space data samples contain one, two, or three signals modulated into 2FSK, BPSK, or QPSK with symbol rates 10, 100, or 1000 kSymbol/s. White space data samples contain no own generated signals. Black space data samples contain two signals with the symbol rate of 22.5 MSymbol/s and offset +14 MHz and −14 MHz from the central frequency occupying the entire observation band. Training and validation of twenty supervised machine learning algorithms have been performed offline in the Matlab Classification Learner application using the collected data set. Fine decision trees have demonstrated the highest classification accuracy of 87.8 %, the observed classification speed of 630000 Objects/s is also higher than the required 2000 Objects/s. Medium decision trees and ensemble boosted trees have demonstrated 87.5 % and 87.7 % accuracy and classification speeds of 950000 and 230000 Objects/s respectively. Therefore, ensemble boosted trees, and fine and medium decision trees have been selected for the deployment on the target radio application in the scope of future work.","PeriodicalId":340768,"journal":{"name":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Coarse Frequency Bands Classification For Cognitive Radio Applications\",\"authors\":\"Inna Valieva, B. Shashidhar, M. Björkman, J. Åkerberg, Mikael Ekström, I. Voitenko\",\"doi\":\"10.1109/ECTI-CON58255.2023.10153155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is focused on multiple supervised machine learning algorithms’ performance evaluation in terms of classification accuracy and speed for the blind frequency bands classification into three occupancy classes: white, gray, and black spaces for potential implementation in cognitive radio application. Training and validation data sets consisting of 180 000 samples, including 60 000 samples per class, have been collected in the controlled experiment. Data samples have been generated using a hardware signal generator and recorded on the receiver’s front end as the time-domain complex signals. Gray space data samples contain one, two, or three signals modulated into 2FSK, BPSK, or QPSK with symbol rates 10, 100, or 1000 kSymbol/s. White space data samples contain no own generated signals. Black space data samples contain two signals with the symbol rate of 22.5 MSymbol/s and offset +14 MHz and −14 MHz from the central frequency occupying the entire observation band. Training and validation of twenty supervised machine learning algorithms have been performed offline in the Matlab Classification Learner application using the collected data set. Fine decision trees have demonstrated the highest classification accuracy of 87.8 %, the observed classification speed of 630000 Objects/s is also higher than the required 2000 Objects/s. Medium decision trees and ensemble boosted trees have demonstrated 87.5 % and 87.7 % accuracy and classification speeds of 950000 and 230000 Objects/s respectively. Therefore, ensemble boosted trees, and fine and medium decision trees have been selected for the deployment on the target radio application in the scope of future work.\",\"PeriodicalId\":340768,\"journal\":{\"name\":\"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTI-CON58255.2023.10153155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTI-CON58255.2023.10153155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究了多监督机器学习算法在分类精度和速度方面的性能评估,以将盲频段划分为白色、灰色和黑色三种占用类别,以便在认知无线电应用中实现。在控制实验中,收集了18万个样本的训练和验证数据集,每个类60,000个样本。使用硬件信号发生器生成数据样本,并将其作为时域复信号记录在接收机前端。灰度空间数据样本包含一个、两个或三个信号,调制成2FSK、BPSK或QPSK,符号速率为10,100或1000ksymbol /s。空白数据样本不包含自己生成的信号。黑空间数据样本包含两个符号率为22.5 MSymbol/s的信号,其中心频率偏移+14 MHz和- 14 MHz占据了整个观测波段。使用收集到的数据集,在Matlab分类学习应用程序中离线执行了20种监督机器学习算法的训练和验证。精细化决策树的分类准确率最高,达到87.8%,观察到的分类速度为630000个对象/s,也高于要求的2000个对象/s。中等决策树和集成增强树的准确率分别为87.5%和87.7%,分类速度分别为950000和230000个对象/s。因此,在未来的工作范围内,选择集成增强树和精细和中等决策树部署在目标无线电应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning-Based Coarse Frequency Bands Classification For Cognitive Radio Applications
This paper is focused on multiple supervised machine learning algorithms’ performance evaluation in terms of classification accuracy and speed for the blind frequency bands classification into three occupancy classes: white, gray, and black spaces for potential implementation in cognitive radio application. Training and validation data sets consisting of 180 000 samples, including 60 000 samples per class, have been collected in the controlled experiment. Data samples have been generated using a hardware signal generator and recorded on the receiver’s front end as the time-domain complex signals. Gray space data samples contain one, two, or three signals modulated into 2FSK, BPSK, or QPSK with symbol rates 10, 100, or 1000 kSymbol/s. White space data samples contain no own generated signals. Black space data samples contain two signals with the symbol rate of 22.5 MSymbol/s and offset +14 MHz and −14 MHz from the central frequency occupying the entire observation band. Training and validation of twenty supervised machine learning algorithms have been performed offline in the Matlab Classification Learner application using the collected data set. Fine decision trees have demonstrated the highest classification accuracy of 87.8 %, the observed classification speed of 630000 Objects/s is also higher than the required 2000 Objects/s. Medium decision trees and ensemble boosted trees have demonstrated 87.5 % and 87.7 % accuracy and classification speeds of 950000 and 230000 Objects/s respectively. Therefore, ensemble boosted trees, and fine and medium decision trees have been selected for the deployment on the target radio application in the scope of future work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing and Implementing a Real-Time Mass Health Screening System: MFU.Pass Low-Frequency Wave Propagation in the Cave Developing Steps for Learning Programming through Gamification Hyperbolic Pattern Detection in Ground Penetrating Radar Images Using Faster R-CNN CMA-Based Metasurface-Based Circularly Polarized Patch Antenna for SATCOM Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1