Hao Li, Shuai Chen, Liqiong Yang, Rui Bai, Weiwu Hu, Freeman Y. Zhong, S. Palermo, P. Chiang
{"title":"一个0.8V, 560fJ/bit, 14Gb/s注入锁定接收器,输入占空比失真可容忍,边缘旋转5/4X子速率CDR, 65nm CMOS","authors":"Hao Li, Shuai Chen, Liqiong Yang, Rui Bai, Weiwu Hu, Freeman Y. Zhong, S. Palermo, P. Chiang","doi":"10.1109/VLSIC.2014.6858399","DOIUrl":null,"url":null,"abstract":"A quarter-rate forwarded-clock receiver utilizes an edge-rotating 5/4X sub-rate CDR for improved jitter tolerance with low power overhead relative to conventional 2X oversampling CDR systems. Low-voltage operation is achieved with efficient quarter-rate clock generation from an injection-locked oscillator (ILO) and through automatic independent phase rotator control that optimizes timing margin of each input quantizer in the presence of receive-side clock static phase errors and transmitter duty-cycle distortion (DCD). Fabricated in GP 65nm CMOS, the receiver operates up to 16Gb/s with a BER<;10-12, achieves a 1MHz phase tracking bandwidth, tolerates ±50%UIpp DCD on input data, and has 14Gb/s energy efficiency of 560fJ/bit at VDD=0.8V.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A 0.8V, 560fJ/bit, 14Gb/s injection-locked receiver with input duty-cycle distortion tolerable edge-rotating 5/4X sub-rate CDR in 65nm CMOS\",\"authors\":\"Hao Li, Shuai Chen, Liqiong Yang, Rui Bai, Weiwu Hu, Freeman Y. Zhong, S. Palermo, P. Chiang\",\"doi\":\"10.1109/VLSIC.2014.6858399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quarter-rate forwarded-clock receiver utilizes an edge-rotating 5/4X sub-rate CDR for improved jitter tolerance with low power overhead relative to conventional 2X oversampling CDR systems. Low-voltage operation is achieved with efficient quarter-rate clock generation from an injection-locked oscillator (ILO) and through automatic independent phase rotator control that optimizes timing margin of each input quantizer in the presence of receive-side clock static phase errors and transmitter duty-cycle distortion (DCD). Fabricated in GP 65nm CMOS, the receiver operates up to 16Gb/s with a BER<;10-12, achieves a 1MHz phase tracking bandwidth, tolerates ±50%UIpp DCD on input data, and has 14Gb/s energy efficiency of 560fJ/bit at VDD=0.8V.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.8V, 560fJ/bit, 14Gb/s injection-locked receiver with input duty-cycle distortion tolerable edge-rotating 5/4X sub-rate CDR in 65nm CMOS
A quarter-rate forwarded-clock receiver utilizes an edge-rotating 5/4X sub-rate CDR for improved jitter tolerance with low power overhead relative to conventional 2X oversampling CDR systems. Low-voltage operation is achieved with efficient quarter-rate clock generation from an injection-locked oscillator (ILO) and through automatic independent phase rotator control that optimizes timing margin of each input quantizer in the presence of receive-side clock static phase errors and transmitter duty-cycle distortion (DCD). Fabricated in GP 65nm CMOS, the receiver operates up to 16Gb/s with a BER<;10-12, achieves a 1MHz phase tracking bandwidth, tolerates ±50%UIpp DCD on input data, and has 14Gb/s energy efficiency of 560fJ/bit at VDD=0.8V.