{"title":"具有自适应视界大小选择的有限脉冲响应滤波算法及其应用","authors":"B. Skorohod","doi":"10.18196/jrc.v3i6.16058","DOIUrl":null,"url":null,"abstract":"It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems.","PeriodicalId":443428,"journal":{"name":"Journal of Robotics and Control (JRC)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications\",\"authors\":\"B. Skorohod\",\"doi\":\"10.18196/jrc.v3i6.16058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems.\",\"PeriodicalId\":443428,\"journal\":{\"name\":\"Journal of Robotics and Control (JRC)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Robotics and Control (JRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jrc.v3i6.16058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Robotics and Control (JRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jrc.v3i6.16058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Impulse Response Filtering Algorithm with Adaptive Horizon Size Selection and Its Applications
It is known, that unlike the Kalman filter (KF) finite impulse response (FIR) filters allow to avoid the divergence and unsatisfactory object tracking connected with temporary perturbations and abrupt object changes. The main challenge is to provide the appropriate choice of a sliding window size for them. In this paper, the new finite impulse response (FIR) filtering algorithm with the adaptive horizon size selection is proposed. The algorithm uses the receding horizon optimal (RHOFIR) filter which receives estimates, an abrupt change detector and an adaptive recurrent mechanism for choosing the window size. Monotonicity and asymptotic properties of the estimation error covariance matrix and the RHOFIR filter gain are established. These results form a solid foundation for justifying the principal possibility to tune the filter gain using them and the developed adaptation mechanism. The proposed algorithm (the ARHOFIR filter) allows reducing the impact of disturbances by varying adaptively the sliding window size. The possibility of this follows from the fact that the window size affects the filter characteristics in different ways. The ARHOFIR filter chooses a large horizon size in the absence of abrupt disturbances and a little during the time intervals of their action. Due to this, it has better transient characteristics compared to the KF and RHOFIR filter at intervals where there is temporary uncertainty and may provide the same accuracy of estimates as the KF in their absence. By simulation, it is shown that the ARHOFIR filter is more robust than the KF and RHOFIR filter for the temporarily uncertain systems.