方差未知的单向随机效应模型中元分析-预测先验分布的逼近

Harunori Mori
{"title":"方差未知的单向随机效应模型中元分析-预测先验分布的逼近","authors":"Harunori Mori","doi":"10.14490/JJSS.47.167","DOIUrl":null,"url":null,"abstract":"In order to use historical data in the design of sample surveys with a Bayesian approach, the information from the historical data must be expressed as a prior distribution. Then, the best prior distribution for the parameter of interest is a predictive distribution. The density function of the predictive distribution generally is not available in an analytical form. From the perspective of practical use, Schmidli et al. (2014) proposed an approximation for the predictive distribution using a mixture of conjugate prior distributions. Their method relies on random numbers drawn from the predictive distribution. However, if the population distribution includes a nuisance parameter, their method becomes impractical. We propose a new approximation method that does not rely on these simulated numbers. Our approximation instead minimizes the mean squared error between the exact Bayes estimator and the one corresponding to the approximated predictive distribution.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance\",\"authors\":\"Harunori Mori\",\"doi\":\"10.14490/JJSS.47.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to use historical data in the design of sample surveys with a Bayesian approach, the information from the historical data must be expressed as a prior distribution. Then, the best prior distribution for the parameter of interest is a predictive distribution. The density function of the predictive distribution generally is not available in an analytical form. From the perspective of practical use, Schmidli et al. (2014) proposed an approximation for the predictive distribution using a mixture of conjugate prior distributions. Their method relies on random numbers drawn from the predictive distribution. However, if the population distribution includes a nuisance parameter, their method becomes impractical. We propose a new approximation method that does not rely on these simulated numbers. Our approximation instead minimizes the mean squared error between the exact Bayes estimator and the one corresponding to the approximated predictive distribution.\",\"PeriodicalId\":326924,\"journal\":{\"name\":\"Journal of the Japan Statistical Society. Japanese issue\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Japan Statistical Society. Japanese issue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14490/JJSS.47.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.47.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在贝叶斯方法的抽样调查设计中使用历史数据,来自历史数据的信息必须表示为先验分布。然后,感兴趣参数的最佳先验分布是预测分布。预测分布的密度函数通常不能用解析形式表示。从实际应用的角度来看,Schmidli et al.(2014)提出了一种使用共轭先验分布混合的预测分布近似。他们的方法依赖于从预测分布中抽取的随机数。但是,如果总体分布包含了一个干扰参数,那么他们的方法就变得不切实际了。我们提出了一种新的不依赖于这些模拟数字的近似方法。相反,我们的近似最小化了精确贝叶斯估计量与近似预测分布对应的估计量之间的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
In order to use historical data in the design of sample surveys with a Bayesian approach, the information from the historical data must be expressed as a prior distribution. Then, the best prior distribution for the parameter of interest is a predictive distribution. The density function of the predictive distribution generally is not available in an analytical form. From the perspective of practical use, Schmidli et al. (2014) proposed an approximation for the predictive distribution using a mixture of conjugate prior distributions. Their method relies on random numbers drawn from the predictive distribution. However, if the population distribution includes a nuisance parameter, their method becomes impractical. We propose a new approximation method that does not rely on these simulated numbers. Our approximation instead minimizes the mean squared error between the exact Bayes estimator and the one corresponding to the approximated predictive distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonparametric tests for the effect of treatment on conditional variance Purely Sequential and Two-Stage Bounded-Length Confidence Interval Estimation Problems in Fisher’s “Nile” Example Poisson Approximations for Sum of Bernoulli Random Variables and its Application to Ewens Sampling Formula A High-Dimensional Two-Sample Test for Non-Gaussian Data under a Strongly Spiked Eigenvalue Model Approximation of the Meta-Analytic-Predictive Prior Distribution in the One-Way Random Effects Model with Unknown Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1