基于错误驱动的汉语拼音字符转换自适应语言建模

J. Huang, D. Powers
{"title":"基于错误驱动的汉语拼音字符转换自适应语言建模","authors":"J. Huang, D. Powers","doi":"10.1109/IALP.2011.46","DOIUrl":null,"url":null,"abstract":"The performance of Chinese Pinyin-to-Character conversion is severely affected when the characteristics of the training and conversion data differ. As natural language is highly variable and uncertain, it is impossible to build a complete and general language model to suit all the tasks. The traditional adaptive MAP models mix the task independent data with task dependent data using a mixture coefficient but we never can predict what style of language users have and what new domain will appear. This paper presents a statistical error-driven adaptive language modeling approach to Chinese Pinyin input system. This model can be incrementally adapted when an error occurs during Pinyin-to-Character converting time. It significantly improves Pinyin-to-Character conversion rate.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error-Driven Adaptive Language Modeling for Chinese Pinyin-to-Character Conversion\",\"authors\":\"J. Huang, D. Powers\",\"doi\":\"10.1109/IALP.2011.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of Chinese Pinyin-to-Character conversion is severely affected when the characteristics of the training and conversion data differ. As natural language is highly variable and uncertain, it is impossible to build a complete and general language model to suit all the tasks. The traditional adaptive MAP models mix the task independent data with task dependent data using a mixture coefficient but we never can predict what style of language users have and what new domain will appear. This paper presents a statistical error-driven adaptive language modeling approach to Chinese Pinyin input system. This model can be incrementally adapted when an error occurs during Pinyin-to-Character converting time. It significantly improves Pinyin-to-Character conversion rate.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当训练数据和转换数据的特征不同时,会严重影响汉字拼音转换的性能。由于自然语言具有高度的可变性和不确定性,不可能建立一个完整的、通用的语言模型来适应所有的任务。传统的自适应MAP模型使用混合系数将任务独立数据与任务相关数据混合,但无法预测用户的语言风格和新领域的出现。提出了一种统计误差驱动的自适应汉语拼音输入系统语言建模方法。当在拼音到字符转换期间发生错误时,可以逐步调整此模型。它显著提高了拼音到字符的转换率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error-Driven Adaptive Language Modeling for Chinese Pinyin-to-Character Conversion
The performance of Chinese Pinyin-to-Character conversion is severely affected when the characteristics of the training and conversion data differ. As natural language is highly variable and uncertain, it is impossible to build a complete and general language model to suit all the tasks. The traditional adaptive MAP models mix the task independent data with task dependent data using a mixture coefficient but we never can predict what style of language users have and what new domain will appear. This paper presents a statistical error-driven adaptive language modeling approach to Chinese Pinyin input system. This model can be incrementally adapted when an error occurs during Pinyin-to-Character converting time. It significantly improves Pinyin-to-Character conversion rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1