使用关键点提取检测自动标注边界框的关键点

Kaito Ishizaki, Kasuki Saruta, Hiroshi Uehara
{"title":"使用关键点提取检测自动标注边界框的关键点","authors":"Kaito Ishizaki, Kasuki Saruta, Hiroshi Uehara","doi":"10.1109/CSCI51800.2020.00312","DOIUrl":null,"url":null,"abstract":"Object detection requires an enormous amount of training data annotated by bounding boxes. All bounding boxes are manually drawn, which leads to highly expensive labor costs. Therefore, this study proposes automatic bounding box annotation of training data for object detection. The keypoints to identify object regions in pictures are extracted, which can then be used for drawing bounding boxes automatically, thus, reducing manual labor requirements. When our proposed method is used for pictures of road signs, keypoints that identify road sign regions in the pictures are detected; these keypoints are found to be highly accurate for drawing bounding boxes.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting Keypoints for Automated Annotation of Bounding Boxes using Keypoint Extraction\",\"authors\":\"Kaito Ishizaki, Kasuki Saruta, Hiroshi Uehara\",\"doi\":\"10.1109/CSCI51800.2020.00312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection requires an enormous amount of training data annotated by bounding boxes. All bounding boxes are manually drawn, which leads to highly expensive labor costs. Therefore, this study proposes automatic bounding box annotation of training data for object detection. The keypoints to identify object regions in pictures are extracted, which can then be used for drawing bounding boxes automatically, thus, reducing manual labor requirements. When our proposed method is used for pictures of road signs, keypoints that identify road sign regions in the pictures are detected; these keypoints are found to be highly accurate for drawing bounding boxes.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目标检测需要大量用边界框标注的训练数据。所有的边界框都是手工绘制的,这导致了非常昂贵的人工成本。因此,本研究提出对训练数据进行自动边界框标注,用于目标检测。提取图像中识别目标区域的关键点,用于自动绘制边界框,从而减少了人工劳动需求。当我们的方法用于道路标志图像时,检测图像中识别道路标志区域的关键点;这些关键点对于绘制边界框是非常精确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Keypoints for Automated Annotation of Bounding Boxes using Keypoint Extraction
Object detection requires an enormous amount of training data annotated by bounding boxes. All bounding boxes are manually drawn, which leads to highly expensive labor costs. Therefore, this study proposes automatic bounding box annotation of training data for object detection. The keypoints to identify object regions in pictures are extracted, which can then be used for drawing bounding boxes automatically, thus, reducing manual labor requirements. When our proposed method is used for pictures of road signs, keypoints that identify road sign regions in the pictures are detected; these keypoints are found to be highly accurate for drawing bounding boxes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1