利用主方程对单电子晶体管进行数值模拟

R. Nuryadi, A. Haryono
{"title":"利用主方程对单电子晶体管进行数值模拟","authors":"R. Nuryadi, A. Haryono","doi":"10.1117/12.862848","DOIUrl":null,"url":null,"abstract":"In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.","PeriodicalId":245973,"journal":{"name":"Southeast Asian International Advances in Micro/Nano-technology","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical simulation of single electron transistor using master equation\",\"authors\":\"R. Nuryadi, A. Haryono\",\"doi\":\"10.1117/12.862848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.\",\"PeriodicalId\":245973,\"journal\":{\"name\":\"Southeast Asian International Advances in Micro/Nano-technology\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Southeast Asian International Advances in Micro/Nano-technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.862848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southeast Asian International Advances in Micro/Nano-technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.862848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了基于主方程的单电子晶体管(SET)仿真技术。该电路由两个隧道结、一个非隧道结和两个栅极电压源和漏极电压源组成。由于隧穿事件的随机性,将隧穿电子描述为离散电荷。模拟的源极漏极电流对漏极电压的变化表现为阶梯特性,而源极漏极电流是栅极电压的周期函数。还发现了库仑钻石区域,这意味着SET操作是基于单电子隧穿的。这些结果再现了前人对SET的研究,表明模拟技术达到了较好的精度。这种仿真方法也适用于单电子转门、单电子泵和其他更复杂的多隧道结电路的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of single electron transistor using master equation
In this work, simulation technique for single electron transistor (SET) based on master equation is presented. The SET is modeled as a circuit consisting of two tunnel junctions, one non-tunnel junction and two voltage sources of gate voltage and drain voltage. A tunneling electron is described as a discrete charge due to stochastic nature of a tunneling event. Simulated source-drain current versus drain voltage characteristics show the staircase behavior, while source-drain current is a periodic function of the gate voltage. Coulomb diamond region is also found, which means that the SET operation is based on single electron tunneling. These results reproduce the previous studies of the SET, indicating that the simulation technique achieves good accuration. Such simulation method is also useful in the application of single electron turnstile, single electron pump and the other more complex multiple tunnel junction circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pupil masks for 2-D intensity synthesis in a high numerical aperture focusing system Effects of fluorescent lighting on in vitro micropropagation of Lemna minor Dispersion compensation for optical coherence tomography Antimicrobial effect of nylon fiber immersed with nano-silver Fabrication of optical comb filter using tapered fiber based ring resonator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1