利用Glcm分析脑肿瘤MRI图像纹理特征的有效方法

A. Kukreja, A. Wadhwani, S. Wadhwani
{"title":"利用Glcm分析脑肿瘤MRI图像纹理特征的有效方法","authors":"A. Kukreja, A. Wadhwani, S. Wadhwani","doi":"10.38124/ijisrt20jul603","DOIUrl":null,"url":null,"abstract":"Tumor spotting and elimination is one problematic issue in medical science that still remains. Untimely imaging techniques CT and MRI imaging techniques aid specialist in coming up with preferable perception, but because of high variability in tumor tissue of divergent patient process come up with laborious risks .In this paper, tumor image processing concern the three stages, namely pre-processing, segmentation and feature extraction using GLCM. After the accession of the source MRI image, it is preprocessed by converting the original image to grayscale image, then use of filters for removal of noise and using arithmetic operators for enhancement, then the stage of thresholding segmentation and watershed segmentation is done followed by a morphological operation to detection of tumor, thereby texture analysis using Gray Level Co -Occurrence Matrix. The above proposed procedures and techniques is applicable in accomplishing the reports axiomatically in less span of time.","PeriodicalId":355617,"journal":{"name":"International Journal of Innovative Science and Research Technology","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Way to Analysis the Texural Features of Brain Tumor MRI Image Using Glcm\",\"authors\":\"A. Kukreja, A. Wadhwani, S. Wadhwani\",\"doi\":\"10.38124/ijisrt20jul603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tumor spotting and elimination is one problematic issue in medical science that still remains. Untimely imaging techniques CT and MRI imaging techniques aid specialist in coming up with preferable perception, but because of high variability in tumor tissue of divergent patient process come up with laborious risks .In this paper, tumor image processing concern the three stages, namely pre-processing, segmentation and feature extraction using GLCM. After the accession of the source MRI image, it is preprocessed by converting the original image to grayscale image, then use of filters for removal of noise and using arithmetic operators for enhancement, then the stage of thresholding segmentation and watershed segmentation is done followed by a morphological operation to detection of tumor, thereby texture analysis using Gray Level Co -Occurrence Matrix. The above proposed procedures and techniques is applicable in accomplishing the reports axiomatically in less span of time.\",\"PeriodicalId\":355617,\"journal\":{\"name\":\"International Journal of Innovative Science and Research Technology\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Science and Research Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.38124/ijisrt20jul603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Science and Research Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38124/ijisrt20jul603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤的发现和消除是医学科学中仍然存在的一个问题。CT和MRI成像技术有助于专科医生获得较好的感知,但由于肿瘤组织的高度变异性,对不同患者的处理过程带来了费力的风险。本文采用GLCM对肿瘤图像进行预处理、分割和特征提取三个阶段的处理。加入源MRI图像后,先将原始图像转换为灰度图像进行预处理,然后使用滤波器去除噪声,使用算术算子进行增强,然后进行阈值分割和分水岭分割阶段,再进行形态学运算检测肿瘤,最后利用灰度共生矩阵进行纹理分析。上述建议的程序和技术适用于在较短的时间内完成报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Way to Analysis the Texural Features of Brain Tumor MRI Image Using Glcm
Tumor spotting and elimination is one problematic issue in medical science that still remains. Untimely imaging techniques CT and MRI imaging techniques aid specialist in coming up with preferable perception, but because of high variability in tumor tissue of divergent patient process come up with laborious risks .In this paper, tumor image processing concern the three stages, namely pre-processing, segmentation and feature extraction using GLCM. After the accession of the source MRI image, it is preprocessed by converting the original image to grayscale image, then use of filters for removal of noise and using arithmetic operators for enhancement, then the stage of thresholding segmentation and watershed segmentation is done followed by a morphological operation to detection of tumor, thereby texture analysis using Gray Level Co -Occurrence Matrix. The above proposed procedures and techniques is applicable in accomplishing the reports axiomatically in less span of time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Volume 5 - 2020, Issue 10 - October Blood Pressure and Control Factor in Hypertensives Monitored at the Referral Hopsital in Boma. Democratic Repubic of the Congo The Role of Social Responsibility Accounting Impact in Supporting Competitive Advantage for Industrial Establishment (Filed Study on the Company Matthew Petroleum) Role of the External Auditor in Reducing Tax Evasion (Field Study- Tax Chamber of Sudan) Volume 5 - 2020, Issue 9 - September
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1