基于特征的方法结合层次分类策略进行关系提取

Jing Qiu, Jun-Kang Hao
{"title":"基于特征的方法结合层次分类策略进行关系提取","authors":"Jing Qiu, Jun-Kang Hao","doi":"10.1109/ICMLC.2010.5580642","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel feature-based method for relation extraction task. Diverse lexical and syntactic features are defined to describe the context of the pair of entities. Dependency features are selected to capture the structure and dependency information of sentence. Hierarchical classifying strategy is used to reduce the weakness of the traditional approach, which treats training examples in different classes equally and independently, At the same time, correction mechanism is used to improve the performance of the system.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-based approach combined with hierarchical classifying strategy to relation extraction\",\"authors\":\"Jing Qiu, Jun-Kang Hao\",\"doi\":\"10.1109/ICMLC.2010.5580642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel feature-based method for relation extraction task. Diverse lexical and syntactic features are defined to describe the context of the pair of entities. Dependency features are selected to capture the structure and dependency information of sentence. Hierarchical classifying strategy is used to reduce the weakness of the traditional approach, which treats training examples in different classes equally and independently, At the same time, correction mechanism is used to improve the performance of the system.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的基于特征的关系提取方法。定义了不同的词汇和语法特征来描述这对实体的上下文。选择依存特征来捕捉句子的结构和依存信息。采用分层分类策略,克服了传统方法对不同类别的训练样本进行平等、独立处理的缺点,同时采用校正机制,提高了系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature-based approach combined with hierarchical classifying strategy to relation extraction
This paper proposes a novel feature-based method for relation extraction task. Diverse lexical and syntactic features are defined to describe the context of the pair of entities. Dependency features are selected to capture the structure and dependency information of sentence. Hierarchical classifying strategy is used to reduce the weakness of the traditional approach, which treats training examples in different classes equally and independently, At the same time, correction mechanism is used to improve the performance of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Does joint decoding really outperform cascade processing in English-to-Chinese transliteration generation? The role of syllabification The design of energy-saving filtering mechanism for sensor networks Feature-based approach combined with hierarchical classifying strategy to relation extraction The comparative study of different Bayesian classifier models New inverse halftoning using texture-and lookup table-based learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1