基于调用图排序框架的软件缺陷预测

Burak Turhan, Gözde Koçak, A. Bener
{"title":"基于调用图排序框架的软件缺陷预测","authors":"Burak Turhan, Gözde Koçak, A. Bener","doi":"10.1109/SEAA.2008.52","DOIUrl":null,"url":null,"abstract":"Recent research on static code attribute (SCA) based defect prediction suggests that a performance ceiling has been achieved and this barrier can be exceeded by increasing the information content in data. In this research we propose static call graph based ranking (CGBR) framework, which can be applied to any defect prediction model based on SCA. In this framework, we model both intra module properties and inter module relations. Our results show that defect predictors using CGBR framework can detect the same number of defective modules, while yielding significantly lower false alarm rates. On industrial public data, we also show that using CGBR framework can improve testing efforts by 23%.","PeriodicalId":127633,"journal":{"name":"2008 34th Euromicro Conference Software Engineering and Advanced Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Software Defect Prediction Using Call Graph Based Ranking (CGBR) Framework\",\"authors\":\"Burak Turhan, Gözde Koçak, A. Bener\",\"doi\":\"10.1109/SEAA.2008.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research on static code attribute (SCA) based defect prediction suggests that a performance ceiling has been achieved and this barrier can be exceeded by increasing the information content in data. In this research we propose static call graph based ranking (CGBR) framework, which can be applied to any defect prediction model based on SCA. In this framework, we model both intra module properties and inter module relations. Our results show that defect predictors using CGBR framework can detect the same number of defective modules, while yielding significantly lower false alarm rates. On industrial public data, we also show that using CGBR framework can improve testing efforts by 23%.\",\"PeriodicalId\":127633,\"journal\":{\"name\":\"2008 34th Euromicro Conference Software Engineering and Advanced Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 34th Euromicro Conference Software Engineering and Advanced Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEAA.2008.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 34th Euromicro Conference Software Engineering and Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2008.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

最近对基于静态代码属性(SCA)的缺陷预测的研究表明,已经达到了性能上限,并且可以通过增加数据中的信息内容来超越这个障碍。本文提出了基于静态调用图的排序框架(CGBR),该框架可应用于任何基于SCA的缺陷预测模型。在这个框架中,我们对模块内属性和模块间关系建模。我们的结果表明,使用CGBR框架的缺陷预测器可以检测到相同数量的缺陷模块,同时产生显着降低的误报率。在工业公共数据上,我们也表明使用CGBR框架可以将测试工作提高23%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Software Defect Prediction Using Call Graph Based Ranking (CGBR) Framework
Recent research on static code attribute (SCA) based defect prediction suggests that a performance ceiling has been achieved and this barrier can be exceeded by increasing the information content in data. In this research we propose static call graph based ranking (CGBR) framework, which can be applied to any defect prediction model based on SCA. In this framework, we model both intra module properties and inter module relations. Our results show that defect predictors using CGBR framework can detect the same number of defective modules, while yielding significantly lower false alarm rates. On industrial public data, we also show that using CGBR framework can improve testing efforts by 23%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimedia System for Emergency Services over TETRA-DVBT Networks Comparing Software Cost Prediction Models by a Visualization Tool Service Coroner: A Diagnostic Tool for Locating OSGi Stale References Enhanced OSGi Bundle Updates to Prevent Runtime Exceptions A Metamodeling Approach to Estimate Software Size from Requirements Specifications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1