Miguel Angel Limón Díaz, F. Cortes, E. J. G. Galván
{"title":"直接驱动机器人操纵臂的可变增益无界调节器","authors":"Miguel Angel Limón Díaz, F. Cortes, E. J. G. Galván","doi":"10.7305/AUTOMATIKA.60-1.969","DOIUrl":null,"url":null,"abstract":"This paper addresses the position-control problem with variable gains for robot manipulators. We present a new regulator based on a hyperbolic-sine structure with tuning rules for control gains. It is demonstrated that the equilibrium point of the closed-loop system is globally, asymptotically stable according to Lyapunov theory. By using a similar methodology, this concept can be extended to other unbounded controllers such as PD and PID. In order to show the usefulness of the proposed scheme and with the purpose of validating its asymptotical stability property, an experimental comparison involving constant gains controllers, for example: simple PD, PID and hyperbolic-tangent schemes vs variable-gains hyperbolic-sine and PD control schemes, was performed by using a three degree-of-freedom, direct-drive robot manipulator.","PeriodicalId":365873,"journal":{"name":"Automatika: Journal for Control, Measurement, Electronics, Computing and Communications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unbounded regulators with variable gains for a direct-drive robot manipulator\",\"authors\":\"Miguel Angel Limón Díaz, F. Cortes, E. J. G. Galván\",\"doi\":\"10.7305/AUTOMATIKA.60-1.969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the position-control problem with variable gains for robot manipulators. We present a new regulator based on a hyperbolic-sine structure with tuning rules for control gains. It is demonstrated that the equilibrium point of the closed-loop system is globally, asymptotically stable according to Lyapunov theory. By using a similar methodology, this concept can be extended to other unbounded controllers such as PD and PID. In order to show the usefulness of the proposed scheme and with the purpose of validating its asymptotical stability property, an experimental comparison involving constant gains controllers, for example: simple PD, PID and hyperbolic-tangent schemes vs variable-gains hyperbolic-sine and PD control schemes, was performed by using a three degree-of-freedom, direct-drive robot manipulator.\",\"PeriodicalId\":365873,\"journal\":{\"name\":\"Automatika: Journal for Control, Measurement, Electronics, Computing and Communications\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika: Journal for Control, Measurement, Electronics, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7305/AUTOMATIKA.60-1.969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika: Journal for Control, Measurement, Electronics, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7305/AUTOMATIKA.60-1.969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unbounded regulators with variable gains for a direct-drive robot manipulator
This paper addresses the position-control problem with variable gains for robot manipulators. We present a new regulator based on a hyperbolic-sine structure with tuning rules for control gains. It is demonstrated that the equilibrium point of the closed-loop system is globally, asymptotically stable according to Lyapunov theory. By using a similar methodology, this concept can be extended to other unbounded controllers such as PD and PID. In order to show the usefulness of the proposed scheme and with the purpose of validating its asymptotical stability property, an experimental comparison involving constant gains controllers, for example: simple PD, PID and hyperbolic-tangent schemes vs variable-gains hyperbolic-sine and PD control schemes, was performed by using a three degree-of-freedom, direct-drive robot manipulator.