基于Hahn矩的语音增强低失真MMSE估计

Ammar S. Al-Zubaidi, Basheera M. Mahmmod, S. Abdulhussain, M. Naser, Abir Hussain
{"title":"基于Hahn矩的语音增强低失真MMSE估计","authors":"Ammar S. Al-Zubaidi, Basheera M. Mahmmod, S. Abdulhussain, M. Naser, Abir Hussain","doi":"10.1109/DeSE58274.2023.10100112","DOIUrl":null,"url":null,"abstract":"Discrete Hahn moments are considered efficient orthogonal moments applied in various scientific areas such as signal processing and computer vision. It has a high energy compaction, considered an advantage for speech enhancement algorithm (SEA). Most conventional SEA present undesirable distortion to the improved signal. Minimizing these issues demands a robust estimator. Therefore, this paper presents Hahn moments-based linear and non-linear estimators. Wiener filter and minimum mean squared error (MMSE) sense are used to form the estimators. These estimators with Hahn moments reduce the distortion in various underlying speech conditions. The presented SEA is evaluated in terms of different quality and intelligibility measurements. The experimental results show the advantage and effectiveness of the proposed system over other existing works.","PeriodicalId":346847,"journal":{"name":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Distortion MMSE Estimator for Speech Enhancement Based on Hahn Moments\",\"authors\":\"Ammar S. Al-Zubaidi, Basheera M. Mahmmod, S. Abdulhussain, M. Naser, Abir Hussain\",\"doi\":\"10.1109/DeSE58274.2023.10100112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discrete Hahn moments are considered efficient orthogonal moments applied in various scientific areas such as signal processing and computer vision. It has a high energy compaction, considered an advantage for speech enhancement algorithm (SEA). Most conventional SEA present undesirable distortion to the improved signal. Minimizing these issues demands a robust estimator. Therefore, this paper presents Hahn moments-based linear and non-linear estimators. Wiener filter and minimum mean squared error (MMSE) sense are used to form the estimators. These estimators with Hahn moments reduce the distortion in various underlying speech conditions. The presented SEA is evaluated in terms of different quality and intelligibility measurements. The experimental results show the advantage and effectiveness of the proposed system over other existing works.\",\"PeriodicalId\":346847,\"journal\":{\"name\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Developments in eSystems Engineering (DeSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DeSE58274.2023.10100112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Developments in eSystems Engineering (DeSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DeSE58274.2023.10100112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离散哈恩矩被认为是有效的正交矩,应用于信号处理和计算机视觉等各个科学领域。它具有高能量压缩,被认为是语音增强算法(SEA)的优势。大多数传统的SEA对改进后的信号存在不理想的失真。最小化这些问题需要一个健壮的估计器。因此,本文提出了基于Hahn矩的线性和非线性估计器。采用维纳滤波和最小均方误差(MMSE)检测构成估计量。这些带有哈恩矩的估计器减少了各种潜在语音条件下的失真。根据不同的质量和可理解性测量来评估所提出的SEA。实验结果表明了该系统相对于现有系统的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Distortion MMSE Estimator for Speech Enhancement Based on Hahn Moments
Discrete Hahn moments are considered efficient orthogonal moments applied in various scientific areas such as signal processing and computer vision. It has a high energy compaction, considered an advantage for speech enhancement algorithm (SEA). Most conventional SEA present undesirable distortion to the improved signal. Minimizing these issues demands a robust estimator. Therefore, this paper presents Hahn moments-based linear and non-linear estimators. Wiener filter and minimum mean squared error (MMSE) sense are used to form the estimators. These estimators with Hahn moments reduce the distortion in various underlying speech conditions. The presented SEA is evaluated in terms of different quality and intelligibility measurements. The experimental results show the advantage and effectiveness of the proposed system over other existing works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Simulation for Investigating Emergency Traffic Situations Real- Time Healthcare Monitoring and Treatment System Based Microcontroller with IoT Automated Face Mask Detection using Artificial Intelligence and Video Surveillance Management Improvement of the Personnel Delivery System in the Mining Complex using Simulation Models An Exploratory Study on the Impact of Hosting Blockchain Applications in Cloud Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1