{"title":"颤振:基于分布式传感、计算和驱动的辅助服装的探索","authors":"Halley P. Profita, N. Farrow, N. Correll","doi":"10.1145/2677199.2680586","DOIUrl":null,"url":null,"abstract":"Assistive technology (AT) has the ability to improve the standard of living of those with disabilities, however, it can often be abandoned for aesthetic or stigmatizing reasons. Garment-based AT offers novel opportunities to address these issues as it can stay with the user to continuously monitor and convey relevant information, is non-invasive, and can provide aesthetically pleasing alternatives. In an effort to overcome traditional AT and wearable computing challenges including, cumbersome hardware constraints and social acceptability, we present Flutter, a fashion-oriented wearable AT. Flutter seamlessly embeds low-profile networked sensing, computation, and actuation to facilitate sensory augmentation for those with hearing loss. The miniaturized distributed hardware enables both textile integration and new methods to pair fashion with function, as embellishments are functionally leveraged to complement technology integration. Finally, we discuss future applications and broader implications of using such computationally-enabled textile wearables to support sensory augmentation beyond the realm of AT.","PeriodicalId":117478,"journal":{"name":"Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Flutter: An Exploration of an Assistive Garment Using Distributed Sensing, Computation and Actuation\",\"authors\":\"Halley P. Profita, N. Farrow, N. Correll\",\"doi\":\"10.1145/2677199.2680586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assistive technology (AT) has the ability to improve the standard of living of those with disabilities, however, it can often be abandoned for aesthetic or stigmatizing reasons. Garment-based AT offers novel opportunities to address these issues as it can stay with the user to continuously monitor and convey relevant information, is non-invasive, and can provide aesthetically pleasing alternatives. In an effort to overcome traditional AT and wearable computing challenges including, cumbersome hardware constraints and social acceptability, we present Flutter, a fashion-oriented wearable AT. Flutter seamlessly embeds low-profile networked sensing, computation, and actuation to facilitate sensory augmentation for those with hearing loss. The miniaturized distributed hardware enables both textile integration and new methods to pair fashion with function, as embellishments are functionally leveraged to complement technology integration. Finally, we discuss future applications and broader implications of using such computationally-enabled textile wearables to support sensory augmentation beyond the realm of AT.\",\"PeriodicalId\":117478,\"journal\":{\"name\":\"Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2677199.2680586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2677199.2680586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flutter: An Exploration of an Assistive Garment Using Distributed Sensing, Computation and Actuation
Assistive technology (AT) has the ability to improve the standard of living of those with disabilities, however, it can often be abandoned for aesthetic or stigmatizing reasons. Garment-based AT offers novel opportunities to address these issues as it can stay with the user to continuously monitor and convey relevant information, is non-invasive, and can provide aesthetically pleasing alternatives. In an effort to overcome traditional AT and wearable computing challenges including, cumbersome hardware constraints and social acceptability, we present Flutter, a fashion-oriented wearable AT. Flutter seamlessly embeds low-profile networked sensing, computation, and actuation to facilitate sensory augmentation for those with hearing loss. The miniaturized distributed hardware enables both textile integration and new methods to pair fashion with function, as embellishments are functionally leveraged to complement technology integration. Finally, we discuss future applications and broader implications of using such computationally-enabled textile wearables to support sensory augmentation beyond the realm of AT.