利用多类神经网络优化Cleanset增长

Adrian Ioan Pîrîu, M. Leonte, Nicolae Postolachi, Dragos Gavrilut
{"title":"利用多类神经网络优化Cleanset增长","authors":"Adrian Ioan Pîrîu, M. Leonte, Nicolae Postolachi, Dragos Gavrilut","doi":"10.1109/SYNASC.2018.00071","DOIUrl":null,"url":null,"abstract":"Starting from 2005-2006 the number of malware samples had an exponential growth to a point where at the beginning of 2018 more than 800 million samples were known. With these changes, security vendors had to adjust - one solution being using machine learning algorithms for prediction. However, as the malware number grows so should the benign sample set (if one wants to have a reliable training and a proactive model). This paper presents some key aspects related to procedures and optimizations one needs to do in order to create a large cleanset (a collection of benign files) that can be used for machine learning training.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimizing Cleanset Growth by Using Multi-Class Neural Networks\",\"authors\":\"Adrian Ioan Pîrîu, M. Leonte, Nicolae Postolachi, Dragos Gavrilut\",\"doi\":\"10.1109/SYNASC.2018.00071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from 2005-2006 the number of malware samples had an exponential growth to a point where at the beginning of 2018 more than 800 million samples were known. With these changes, security vendors had to adjust - one solution being using machine learning algorithms for prediction. However, as the malware number grows so should the benign sample set (if one wants to have a reliable training and a proactive model). This paper presents some key aspects related to procedures and optimizations one needs to do in order to create a large cleanset (a collection of benign files) that can be used for machine learning training.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从2005-2006年开始,恶意软件样本的数量呈指数级增长,到2018年初,已知样本超过8亿个。有了这些变化,安全供应商不得不做出调整——一种解决方案是使用机器学习算法进行预测。然而,随着恶意软件数量的增加,良性样本集也应该增加(如果想要获得可靠的训练和主动模型)。本文介绍了与过程和优化相关的一些关键方面,以便创建可用于机器学习训练的大型干净集(良性文件的集合)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing Cleanset Growth by Using Multi-Class Neural Networks
Starting from 2005-2006 the number of malware samples had an exponential growth to a point where at the beginning of 2018 more than 800 million samples were known. With these changes, security vendors had to adjust - one solution being using machine learning algorithms for prediction. However, as the malware number grows so should the benign sample set (if one wants to have a reliable training and a proactive model). This paper presents some key aspects related to procedures and optimizations one needs to do in order to create a large cleanset (a collection of benign files) that can be used for machine learning training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1