基于HHT和小波变换的自相似网络流量异常检测

Xiaorong Cheng, Kun Xie, Dong Wang
{"title":"基于HHT和小波变换的自相似网络流量异常检测","authors":"Xiaorong Cheng, Kun Xie, Dong Wang","doi":"10.1109/IAS.2009.219","DOIUrl":null,"url":null,"abstract":"Network traffic anomaly detection can be done through the self-similar analysis of network traffic. In this case, the abnormal condition of network can be indicated by investigating if the performance parameters of real time data locate at the acceptable ranges. A common method of estimating self-similar parameter is the Wavelet transform. However, the Wavelet transform fails to exclude the influence of non-stationary signal’s periodicity and trend term. In view of the fact that Hilbert-Huang Transform (HHT) has unique advantage on non-stationary signal treatment, in this paper, a refined self-similar parameter estimation algorithm is designed through the combination of wavelet analysis and Hilbert-Huang Transform and a set of experiments are run to verify the improvement in the accuracy of parameter estimation and network traffic anomaly detection.","PeriodicalId":240354,"journal":{"name":"2009 Fifth International Conference on Information Assurance and Security","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Network Traffic Anomaly Detection Based on Self-Similarity Using HHT and Wavelet Transform\",\"authors\":\"Xiaorong Cheng, Kun Xie, Dong Wang\",\"doi\":\"10.1109/IAS.2009.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network traffic anomaly detection can be done through the self-similar analysis of network traffic. In this case, the abnormal condition of network can be indicated by investigating if the performance parameters of real time data locate at the acceptable ranges. A common method of estimating self-similar parameter is the Wavelet transform. However, the Wavelet transform fails to exclude the influence of non-stationary signal’s periodicity and trend term. In view of the fact that Hilbert-Huang Transform (HHT) has unique advantage on non-stationary signal treatment, in this paper, a refined self-similar parameter estimation algorithm is designed through the combination of wavelet analysis and Hilbert-Huang Transform and a set of experiments are run to verify the improvement in the accuracy of parameter estimation and network traffic anomaly detection.\",\"PeriodicalId\":240354,\"journal\":{\"name\":\"2009 Fifth International Conference on Information Assurance and Security\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Information Assurance and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Information Assurance and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

网络流量异常检测可以通过对网络流量的自相似分析来实现。在这种情况下,可以通过考察实时数据的性能参数是否处于可接受的范围来判断网络的异常情况。一种常用的自相似参数估计方法是小波变换。然而,小波变换不能排除非平稳信号的周期性和趋势项的影响。鉴于Hilbert-Huang变换(Hilbert-Huang Transform, HHT)在非平稳信号处理上具有独特的优势,本文将小波分析与Hilbert-Huang变换相结合,设计了一种改进的自相似参数估计算法,并进行了一组实验,验证了参数估计精度和网络流量异常检测精度的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Traffic Anomaly Detection Based on Self-Similarity Using HHT and Wavelet Transform
Network traffic anomaly detection can be done through the self-similar analysis of network traffic. In this case, the abnormal condition of network can be indicated by investigating if the performance parameters of real time data locate at the acceptable ranges. A common method of estimating self-similar parameter is the Wavelet transform. However, the Wavelet transform fails to exclude the influence of non-stationary signal’s periodicity and trend term. In view of the fact that Hilbert-Huang Transform (HHT) has unique advantage on non-stationary signal treatment, in this paper, a refined self-similar parameter estimation algorithm is designed through the combination of wavelet analysis and Hilbert-Huang Transform and a set of experiments are run to verify the improvement in the accuracy of parameter estimation and network traffic anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Joint Multiscale Algorithm with Auto-adapted Threshold for Image Denoising E-government Security Management: Key Factors and Countermeasure Security Threats and Countermeasures for Intra-vehicle Networks 2-Level-Wavelet-Based License Plate Edge Detection Proxy Re-encryption Scheme Based on SK Identity Based Encryption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1