{"title":"单频飞行时间距离相机的概率相位展开","authors":"Ryan Crabb, R. Manduchi","doi":"10.1109/3DV.2014.89","DOIUrl":null,"url":null,"abstract":"This paper proposes a solution to the 2-D phase unwrapping problem, inherent to time-of-flight range sensing technology due to the cyclic nature of phase. Our method uses a single frequency capture period to improve frame rate and decrease the presence of motion artifacts encountered in multiple frequency solutions. We present a probabilistic framework that considers intensity image in addition to the phase image. The phase unwrapping problem is cast in terms of global optimization of a carefully chosen objective function. Comparative experimental results confirm the effectiveness of the proposed approach.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Probabilistic Phase Unwrapping for Single-Frequency Time-of-Flight Range Cameras\",\"authors\":\"Ryan Crabb, R. Manduchi\",\"doi\":\"10.1109/3DV.2014.89\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a solution to the 2-D phase unwrapping problem, inherent to time-of-flight range sensing technology due to the cyclic nature of phase. Our method uses a single frequency capture period to improve frame rate and decrease the presence of motion artifacts encountered in multiple frequency solutions. We present a probabilistic framework that considers intensity image in addition to the phase image. The phase unwrapping problem is cast in terms of global optimization of a carefully chosen objective function. Comparative experimental results confirm the effectiveness of the proposed approach.\",\"PeriodicalId\":275516,\"journal\":{\"name\":\"2014 2nd International Conference on 3D Vision\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 2nd International Conference on 3D Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2014.89\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Probabilistic Phase Unwrapping for Single-Frequency Time-of-Flight Range Cameras
This paper proposes a solution to the 2-D phase unwrapping problem, inherent to time-of-flight range sensing technology due to the cyclic nature of phase. Our method uses a single frequency capture period to improve frame rate and decrease the presence of motion artifacts encountered in multiple frequency solutions. We present a probabilistic framework that considers intensity image in addition to the phase image. The phase unwrapping problem is cast in terms of global optimization of a carefully chosen objective function. Comparative experimental results confirm the effectiveness of the proposed approach.