{"title":"Perbandingan Metode K-Nearest Neighbors dan Naïve Bayes Classifier Pada Klasifikasi Status Gizi Balita di Puskesmas Muara Jawa Kota Samarinda","authors":"Moch. Rizky Yuliansyah, M. B, Annafi’ Franz","doi":"10.30872/atasi.v1i1.25","DOIUrl":null,"url":null,"abstract":"Klasifikasi adalah salah satu pembelajaran yang paling umum di dalam data mining. Klasifikasi dapat didefinisikan sebagai bentuk dari analisis data yang digunakan untuk mengekstrak model yang akan digunakan untuk memprediksi label kelas. Status Gizi adalah ukuran keberhasilan dalam pemenuhan nutrisi untuk anak yang diindikasikan oleh berat badan dan tinggi badan anak. Status gizi juga dapat didefinisikan sebagai status kesehatan yang dihasilkan oleh keseimbangan antara kebutuhan dan masukan nutrisi. Metode K-Nearest Neighbors (KNN) merupakan sebuah metode untuk melakukan klasifikasi berdasarkan kedekatan lokasi (jarak) suatu data dengan data yang lain. Prinsip kerja K-Nearest Neighbors (KNN) adalah mencari jarak terdekat antara data yang dievaluasi dengan (K) tetangga terdekatnya dalam data pelatihan. Metode Naïve Bayes Classifier (NBC) merupakan sebuah metode klasifikasi yang memanfaatkan teori probabilitas untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya. Adapun tujuan dari penelitian ini adalah untuk melakukan perbandingan hasil Klasifikasi Status Gizi Balita dengan menggunakan metode K-Nearest Neighbors dan Naïve Bayes Classifier. Dari perbandingan performa antara metode K-Nearest Neighbors dan Naïve Bayes Classifier menggunakan f1 score sebagai patokan utama performa klasifikasi. Didapatkan hasil bahwa metode K-Nearest Neighbors unggul pada f1 score dengan selisih cukup besar yakni 13,42 %. Sehingga, dapat disimpulkan bahwa pada masalah klasifikasi status gizi balita metode K-Nearest Neighbors mengungguli Naïve Bayes Classifier.","PeriodicalId":251064,"journal":{"name":"Adopsi Teknologi dan Sistem Informasi (ATASI)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adopsi Teknologi dan Sistem Informasi (ATASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30872/atasi.v1i1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Perbandingan Metode K-Nearest Neighbors dan Naïve Bayes Classifier Pada Klasifikasi Status Gizi Balita di Puskesmas Muara Jawa Kota Samarinda
Klasifikasi adalah salah satu pembelajaran yang paling umum di dalam data mining. Klasifikasi dapat didefinisikan sebagai bentuk dari analisis data yang digunakan untuk mengekstrak model yang akan digunakan untuk memprediksi label kelas. Status Gizi adalah ukuran keberhasilan dalam pemenuhan nutrisi untuk anak yang diindikasikan oleh berat badan dan tinggi badan anak. Status gizi juga dapat didefinisikan sebagai status kesehatan yang dihasilkan oleh keseimbangan antara kebutuhan dan masukan nutrisi. Metode K-Nearest Neighbors (KNN) merupakan sebuah metode untuk melakukan klasifikasi berdasarkan kedekatan lokasi (jarak) suatu data dengan data yang lain. Prinsip kerja K-Nearest Neighbors (KNN) adalah mencari jarak terdekat antara data yang dievaluasi dengan (K) tetangga terdekatnya dalam data pelatihan. Metode Naïve Bayes Classifier (NBC) merupakan sebuah metode klasifikasi yang memanfaatkan teori probabilitas untuk memprediksi probabilitas di masa depan berdasarkan pengalaman di masa sebelumnya. Adapun tujuan dari penelitian ini adalah untuk melakukan perbandingan hasil Klasifikasi Status Gizi Balita dengan menggunakan metode K-Nearest Neighbors dan Naïve Bayes Classifier. Dari perbandingan performa antara metode K-Nearest Neighbors dan Naïve Bayes Classifier menggunakan f1 score sebagai patokan utama performa klasifikasi. Didapatkan hasil bahwa metode K-Nearest Neighbors unggul pada f1 score dengan selisih cukup besar yakni 13,42 %. Sehingga, dapat disimpulkan bahwa pada masalah klasifikasi status gizi balita metode K-Nearest Neighbors mengungguli Naïve Bayes Classifier.