性别和饮食对TGF-β3部分缺乏小鼠胃肠道的影响

P. Gallego, A. Bagüés, E. Escasany, Y. López-Tofiño, Antonio Márquez, G. Medina-Gómez, J. Uranga, R. Abalo
{"title":"性别和饮食对TGF-β3部分缺乏小鼠胃肠道的影响","authors":"P. Gallego, A. Bagüés, E. Escasany, Y. López-Tofiño, Antonio Márquez, G. Medina-Gómez, J. Uranga, R. Abalo","doi":"10.3390/iecn2020-06983","DOIUrl":null,"url":null,"abstract":"The transforming growth factor β (TGFβ) family plays a role in fibrosis and has been involved in inflammatory bowel disease (IBD), a chronic gastrointestinal (GI) tract disease that can affect both sexes. Importantly, this is increasingly prevalent in industrialized countries due to changes in lifestyle and diets. The family comprises three isoforms: TGFβ1, TGFβ2 and TGFβ3. While TGFβ1 has an established role in fibrosis, the pathophysiological relevance of the two other isoforms is unclear. Here we evaluated the possible functional and structural alterations of the GI tract and sex influence in an experimental model with partial deficiency of TGF-β3, due to lethality of the homozygous null mouse. Wild-type (WT) and heterozygous for TGF-β3 (HZ) mice of both sexes were exposed to control or high fat diet (HFD), as a possible model of IBD. After oral administration of a radiopaque marker, faeces were collected for 4 h, weighed and exposed to X-rays for GI transit evaluation. Body weight, size/length and histology of the GI organs were also evaluated. No typical signs of IBD were detected. WT females presented lower body weight, delayed GI transit and an increased relative size of the GI organs when compared to males. The HZ genotype modified the latency of expulsion of marked faeces, in a sex and diet dependent manner, without producing macroscopic structural alterations in the GI tract. Moreover, submucosa thickness was decreased in HZ male mice under control diet. HFD increased body weight, accelerated GI transit and decreased GI organs size, especially in females. Importantly, HFD partly counteracted the effects of TGF-β3 heterozygosity on the latency of marked faeces expulsion. To conclude, sex, diet and TGF-β3 genotype alter the GI tract motility and structure, with a possible impact on the IBD development associated with obesity, yet to be determined.","PeriodicalId":320592,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Nutrients - Nutritional and Microbiota Effects on Chronic Disease","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of sex and diet on the gastrointestinal tract in a mice model with partial deficiency for TGF-β3\",\"authors\":\"P. Gallego, A. Bagüés, E. Escasany, Y. López-Tofiño, Antonio Márquez, G. Medina-Gómez, J. Uranga, R. Abalo\",\"doi\":\"10.3390/iecn2020-06983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transforming growth factor β (TGFβ) family plays a role in fibrosis and has been involved in inflammatory bowel disease (IBD), a chronic gastrointestinal (GI) tract disease that can affect both sexes. Importantly, this is increasingly prevalent in industrialized countries due to changes in lifestyle and diets. The family comprises three isoforms: TGFβ1, TGFβ2 and TGFβ3. While TGFβ1 has an established role in fibrosis, the pathophysiological relevance of the two other isoforms is unclear. Here we evaluated the possible functional and structural alterations of the GI tract and sex influence in an experimental model with partial deficiency of TGF-β3, due to lethality of the homozygous null mouse. Wild-type (WT) and heterozygous for TGF-β3 (HZ) mice of both sexes were exposed to control or high fat diet (HFD), as a possible model of IBD. After oral administration of a radiopaque marker, faeces were collected for 4 h, weighed and exposed to X-rays for GI transit evaluation. Body weight, size/length and histology of the GI organs were also evaluated. No typical signs of IBD were detected. WT females presented lower body weight, delayed GI transit and an increased relative size of the GI organs when compared to males. The HZ genotype modified the latency of expulsion of marked faeces, in a sex and diet dependent manner, without producing macroscopic structural alterations in the GI tract. Moreover, submucosa thickness was decreased in HZ male mice under control diet. HFD increased body weight, accelerated GI transit and decreased GI organs size, especially in females. Importantly, HFD partly counteracted the effects of TGF-β3 heterozygosity on the latency of marked faeces expulsion. To conclude, sex, diet and TGF-β3 genotype alter the GI tract motility and structure, with a possible impact on the IBD development associated with obesity, yet to be determined.\",\"PeriodicalId\":320592,\"journal\":{\"name\":\"Proceedings of The 1st International Electronic Conference on Nutrients - Nutritional and Microbiota Effects on Chronic Disease\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 1st International Electronic Conference on Nutrients - Nutritional and Microbiota Effects on Chronic Disease\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iecn2020-06983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Nutrients - Nutritional and Microbiota Effects on Chronic Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iecn2020-06983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

转化生长因子β (TGFβ)家族在纤维化中起作用,并参与炎症性肠病(IBD),一种可影响两性的慢性胃肠道疾病。重要的是,由于生活方式和饮食的改变,这在工业化国家越来越普遍。该家族包括三种亚型:TGFβ1、TGFβ2和TGFβ3。虽然tgf - β1在纤维化中有明确的作用,但其他两种亚型的病理生理相关性尚不清楚。在本研究中,我们评估了由于纯合子小鼠致死导致的TGF-β3部分缺失的实验模型中可能的胃肠道功能和结构改变以及性别影响。TGF-β3 (HZ)野生型(WT)和杂合型(HZ)小鼠均暴露于对照或高脂饮食(HFD)中,作为IBD的可能模型。口服不透射线标记物后,收集粪便4小时,称重并暴露于x光下进行胃肠道运输评估。还评估了体重、大小/长度和胃肠道器官的组织学。未发现典型的IBD征象。与男性相比,WT女性表现为体重较低,胃肠道转运延迟,胃肠道器官相对大小增加。HZ基因型以性别和饮食依赖的方式改变了排出标记粪便的潜伏期,而不会在胃肠道中产生宏观结构改变。对照组小鼠粘膜下层厚度明显降低。HFD增加体重,加速胃肠道运输,减少胃肠道器官大小,尤其是在女性中。重要的是,HFD部分抵消了TGF-β3杂合性对显著排便潜伏期的影响。综上所述,性别、饮食和TGF-β3基因型改变了胃肠道的运动和结构,对肥胖相关IBD发生的影响尚不明确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of sex and diet on the gastrointestinal tract in a mice model with partial deficiency for TGF-β3
The transforming growth factor β (TGFβ) family plays a role in fibrosis and has been involved in inflammatory bowel disease (IBD), a chronic gastrointestinal (GI) tract disease that can affect both sexes. Importantly, this is increasingly prevalent in industrialized countries due to changes in lifestyle and diets. The family comprises three isoforms: TGFβ1, TGFβ2 and TGFβ3. While TGFβ1 has an established role in fibrosis, the pathophysiological relevance of the two other isoforms is unclear. Here we evaluated the possible functional and structural alterations of the GI tract and sex influence in an experimental model with partial deficiency of TGF-β3, due to lethality of the homozygous null mouse. Wild-type (WT) and heterozygous for TGF-β3 (HZ) mice of both sexes were exposed to control or high fat diet (HFD), as a possible model of IBD. After oral administration of a radiopaque marker, faeces were collected for 4 h, weighed and exposed to X-rays for GI transit evaluation. Body weight, size/length and histology of the GI organs were also evaluated. No typical signs of IBD were detected. WT females presented lower body weight, delayed GI transit and an increased relative size of the GI organs when compared to males. The HZ genotype modified the latency of expulsion of marked faeces, in a sex and diet dependent manner, without producing macroscopic structural alterations in the GI tract. Moreover, submucosa thickness was decreased in HZ male mice under control diet. HFD increased body weight, accelerated GI transit and decreased GI organs size, especially in females. Importantly, HFD partly counteracted the effects of TGF-β3 heterozygosity on the latency of marked faeces expulsion. To conclude, sex, diet and TGF-β3 genotype alter the GI tract motility and structure, with a possible impact on the IBD development associated with obesity, yet to be determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUATION AND DETERMINATIONS OF SECONDARY METABOLITES AND ITS ANTIOXIDANT ACTIVITIES OF VARIOUS FRACTIONS OF ALBIZIA MYRIOPHYLLA BARK Vitamin D supplementation is association with disease activity in systemic lupus erythematosus patients Cocoa and cocoa fibre intake modulate reactive oxygen species and immunoglobulin production in rats submitted to acute running exercise Dynamic Multi-Stage Gastrointestinal Digestion Model Assessment of Microbial Fermentation Products of Collagen Hydrolysates Elacteriospermum tapos ameliorates maternal obesity effect on serum leptin changes in male offspring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1