利用偏振合成孔径雷达(SAR)图像对堤防进行分类

Lalitha Dabbiru, J. Aanstoos, N. Younan
{"title":"利用偏振合成孔径雷达(SAR)图像对堤防进行分类","authors":"Lalitha Dabbiru, J. Aanstoos, N. Younan","doi":"10.1109/AIPR.2010.5759703","DOIUrl":null,"url":null,"abstract":"The recent catastrophe caused by hurricane Katrina emphasizes the importance of examination of levees to improve the condition of those that are prone to failure during floods. On-site inspection of levees is costly and time-consuming, so there is a need to develop efficient techniques based on remote sensing technologies to identify levees that are more vulnerable to failure under flood loading. This research uses NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) backscatter data for classification and analysis of earthen levees. The overall purpose of this research is to detect the problem areas along the levee such as through-seepage, sand boils and slough slides. This paper focuses on detection of slough slides. Since the UAVSAR is a quad-polarized L-band (λ = 25 cm) radar, the radar signals penetrate into the soil which aids in detecting soil property variations in the top layer. The research methodology comprises three steps: initially the SAR image is classified into three scattering components using the Freeman-Durden decomposition algorithm; then unsupervised classification is performed based on the polarimetric decomposition parameters: entropy (H) and alpha (α); and finally reclassified using the Wishart classifier. A 3×3 coherency matrix is calculated for each pixel of the radar's compressed Stokes matrix multi-look backscatter data and is used to retrieve these parameters. Different scattering mechanisms like surface scattering, dihedral scattering and volume scattering are observed to distinguish different targets along the levee. The experimental results show that the Wishart classifier can be used to detect slough slides on levees.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification of levees using polarimetric Synthetic Aperture Radar (SAR) imagery\",\"authors\":\"Lalitha Dabbiru, J. Aanstoos, N. Younan\",\"doi\":\"10.1109/AIPR.2010.5759703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent catastrophe caused by hurricane Katrina emphasizes the importance of examination of levees to improve the condition of those that are prone to failure during floods. On-site inspection of levees is costly and time-consuming, so there is a need to develop efficient techniques based on remote sensing technologies to identify levees that are more vulnerable to failure under flood loading. This research uses NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) backscatter data for classification and analysis of earthen levees. The overall purpose of this research is to detect the problem areas along the levee such as through-seepage, sand boils and slough slides. This paper focuses on detection of slough slides. Since the UAVSAR is a quad-polarized L-band (λ = 25 cm) radar, the radar signals penetrate into the soil which aids in detecting soil property variations in the top layer. The research methodology comprises three steps: initially the SAR image is classified into three scattering components using the Freeman-Durden decomposition algorithm; then unsupervised classification is performed based on the polarimetric decomposition parameters: entropy (H) and alpha (α); and finally reclassified using the Wishart classifier. A 3×3 coherency matrix is calculated for each pixel of the radar's compressed Stokes matrix multi-look backscatter data and is used to retrieve these parameters. Different scattering mechanisms like surface scattering, dihedral scattering and volume scattering are observed to distinguish different targets along the levee. The experimental results show that the Wishart classifier can be used to detect slough slides on levees.\",\"PeriodicalId\":128378,\"journal\":{\"name\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIPR.2010.5759703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近卡特里娜飓风造成的灾难强调了检查堤坝的重要性,以改善那些在洪水期间容易破裂的堤坝的状况。对堤坝进行现场检查既昂贵又耗时,因此需要开发基于遥感技术的高效技术,以识别在洪水荷载下更容易破坏的堤坝。本研究使用NASA喷气推进实验室的无人飞行器合成孔径雷达(UAVSAR)后向散射数据对土堤进行分类和分析。本次研究的总体目的是检测堤防沿线的渗漏、渗水、溃沙、滑坡等问题区域。本文的研究重点是滑坡的检测。由于UAVSAR是四极化l波段(λ = 25 cm)雷达,雷达信号穿透土壤,有助于探测顶层土壤性质的变化。研究方法包括三个步骤:首先利用Freeman-Durden分解算法将SAR图像分成三个散射分量;然后根据极化分解参数熵(H)和α (α)进行无监督分类;最后使用Wishart分类器进行重新分类。对雷达压缩Stokes矩阵多视后向散射数据的每个像素计算3×3相干矩阵,并用于检索这些参数。利用不同的散射机制,如表面散射、二面体散射和体积散射来区分堤防沿线不同的目标。实验结果表明,Wishart分类器可以用于堤防滑坡的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of levees using polarimetric Synthetic Aperture Radar (SAR) imagery
The recent catastrophe caused by hurricane Katrina emphasizes the importance of examination of levees to improve the condition of those that are prone to failure during floods. On-site inspection of levees is costly and time-consuming, so there is a need to develop efficient techniques based on remote sensing technologies to identify levees that are more vulnerable to failure under flood loading. This research uses NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) backscatter data for classification and analysis of earthen levees. The overall purpose of this research is to detect the problem areas along the levee such as through-seepage, sand boils and slough slides. This paper focuses on detection of slough slides. Since the UAVSAR is a quad-polarized L-band (λ = 25 cm) radar, the radar signals penetrate into the soil which aids in detecting soil property variations in the top layer. The research methodology comprises three steps: initially the SAR image is classified into three scattering components using the Freeman-Durden decomposition algorithm; then unsupervised classification is performed based on the polarimetric decomposition parameters: entropy (H) and alpha (α); and finally reclassified using the Wishart classifier. A 3×3 coherency matrix is calculated for each pixel of the radar's compressed Stokes matrix multi-look backscatter data and is used to retrieve these parameters. Different scattering mechanisms like surface scattering, dihedral scattering and volume scattering are observed to distinguish different targets along the levee. The experimental results show that the Wishart classifier can be used to detect slough slides on levees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated cross-sensor registration, orthorectification and geopositioning using LIDAR digital elevation models Gray-level co-occurrence matrices as features in edge enhanced images Rock image segmentation using watershed with shape markers Adaptive selection of visual and infra-red image fusion rules Tactical geospatial intelligence from full motion video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1