纹理分类的高效分形方法

Andreea Lavinia Popescu, D. Popescu, Radu Tudor Ionescu, N. Angelescu, Romeo Cojocaru
{"title":"纹理分类的高效分形方法","authors":"Andreea Lavinia Popescu, D. Popescu, Radu Tudor Ionescu, N. Angelescu, Romeo Cojocaru","doi":"10.1109/IcConSCS.2013.6632021","DOIUrl":null,"url":null,"abstract":"This paper presents an alternative approach to classical box counting algorithm for fractal dimension estimation. Irrelevant data are eliminated from input sequences of the algorithm and a new fractal dimension, called efficient fractal dimension (EFD), which is based on the remaining sequences is calculated. The discriminating capacity and the time efficiency of EFD are evaluated in comparison with fractal dimension (FD) computed by box counting both theoretically and empirically. The results revealed that EFD is better than FD for texture identification and classification.","PeriodicalId":265358,"journal":{"name":"2nd International Conference on Systems and Computer Science","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Efficient fractal method for texture classification\",\"authors\":\"Andreea Lavinia Popescu, D. Popescu, Radu Tudor Ionescu, N. Angelescu, Romeo Cojocaru\",\"doi\":\"10.1109/IcConSCS.2013.6632021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an alternative approach to classical box counting algorithm for fractal dimension estimation. Irrelevant data are eliminated from input sequences of the algorithm and a new fractal dimension, called efficient fractal dimension (EFD), which is based on the remaining sequences is calculated. The discriminating capacity and the time efficiency of EFD are evaluated in comparison with fractal dimension (FD) computed by box counting both theoretically and empirically. The results revealed that EFD is better than FD for texture identification and classification.\",\"PeriodicalId\":265358,\"journal\":{\"name\":\"2nd International Conference on Systems and Computer Science\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2nd International Conference on Systems and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IcConSCS.2013.6632021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd International Conference on Systems and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IcConSCS.2013.6632021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种替代经典盒计数算法的分形维数估计方法。该算法剔除输入序列中的不相关数据,并基于剩余序列计算新的分形维数,称为有效分形维数(EFD)。从理论和经验两方面评价了分形维数法与盒计数法的分形维数法的判别能力和时间效率。结果表明,EFD在纹理识别和分类上优于FD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient fractal method for texture classification
This paper presents an alternative approach to classical box counting algorithm for fractal dimension estimation. Irrelevant data are eliminated from input sequences of the algorithm and a new fractal dimension, called efficient fractal dimension (EFD), which is based on the remaining sequences is calculated. The discriminating capacity and the time efficiency of EFD are evaluated in comparison with fractal dimension (FD) computed by box counting both theoretically and empirically. The results revealed that EFD is better than FD for texture identification and classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From bridge to control hub — The power Smart Grid evolution Data acquisition system for recording of photovoltaic panel power First order controller for a petrochemical pyrolysis reactor Audience indicators for geospatial marketing using traffic data from cellular networks Integrating wireless body and ambient sensors into a hybrid femtocell network for home monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1